

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration: Program operator: Publisher:	Sateba Norway AS The Norwegian EPD Foundation The Norwegian EPD Foundation
Declaration number:	NEPD-1921-842-EN
Registration number:	NEPD-1921-842-EN
ECO Platform reference number:	-
Issue date:	03.12.2019
Valid to:	03.12.2024

Cable Troughs for railwaytunnels

Sateba NorwayAS

www.epd-norge.no

General information

Product:

Cable Troughs for railwaytunnels

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 97722020

e-mail: post@epd-norge.no

Declaration number: NEPD-1921-842-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 tonne Cable Troughs for railwaytunnels

Declared unit with option:

A1, A2, A3, A4

Functional unit:

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

and Konnig

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Sateba Norway AS Contact person: Geir-Olav Larsen Phone: +47 91 34 68 03 e-mail: geir-olav.larsen@sateba.com

Manufacturer:

Sateba Norway AS

Place of production:

Hensmoveien 101, Hønefoss, Norway

Management system:

ISO 9001 og ISO 14001

Organisation no:

998 608 511

Issue date: 03.12.2019

Valid to: 03.12.2024

Year of study:

2019

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using eEPD v3.0 from LCA.no Approval: Company specific data are:

Collected/registered by: Geir Olav Larsen

Internal verification by: Hedda Winther

Approved:

Sign	
Hakon Hauan Managing Director of EPD-Norway	

CONSOLIS

Product

Product description:

Cable Troughs, for use in railwaytunnels. Produced by Spenncon Rail.

Product specification

1 complete Cable Troughs (KK, KKF and 10 pcs. KKL)

Materials	%
Cement	20,88
Aggregate	69,59
Water	7,43
Chemicals	0,35
Reinforcement	1,76

LCA: Calculation rules

Declared unit:

1 tonne Cable Troughs for railwaytunnels

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

All important raw materials and all important energy consumption are included. The production process for the raw materials and energy streams included with very small quantities (<1%) is not included. These cut-off criteria do not apply to hazardous materials and substances.

Data quality:

Technical data:

Cable Troughs with a weight of 4.958 Concrete class B35 MF40 The concrete are in compliance with NS-EN-206 The elements are in compliance with NS-EN 13369

Market:

Folloline, Norway

Reference service life, product

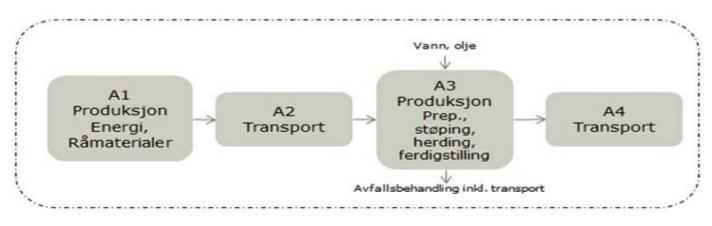
50 years

Reference service life, building

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Inbound energy and water, as well as waste production in own production, are allocated equally between all the manufacturer's products through mass allocation. Impact on primary production of recycled materials is allocated to the main product where the material was used. The recycling process and transport of the material is allocated to this analysis.


Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Company-specific data is from 2018 and is based on data from production at Spenncon Rail.

Materials	Source	Data quality	Year
Chemicals	Chemicals below cut-off	No data	0
Aggregate	Modified EcoInvent	Database	2012
Reinforcement	Østfoldforskning	Database	2012
Chemicals	EPD-EFC-20150086-IAG1-EN	EPD	2015
Chemicals	EPD-EFC-20150091-IAG1-EN	EPD	2015
Cement	NEPD-1217-383	EPD	2015
Cement	NEPD-24-201-NO	EPD	2015
Reinforcement	NEPD-321-200-EN	EPD	2015
Aggregate	Østfoldforskning	Database	2016
Water	ecoinvent 3.4	Database	2017

System boundary:

Production, including emissions in connection with the production and transport of raw materials, water and electricity. Waste treatment of waste and waste from the company is also included. In addition, transport to the customer in Åsland is included.

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	55,0 %	Lastebil med henger, EURO 6	81	0,022606	l/tkm	1,83
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Assembly (A5)		Use (B1)			
•	Unit	Value	•	Unit	Value
Auxiliary	kg				
Water consumption	m ³		lên.		
Electricity consumption	kWh				
Other energy carriers	MJ				
Material loss	kg				
Output materials fr ste treatment	kg				
Dust in the air	kg				
VOC emissions	kg				
Maintenance (B2)/Repair (B3)			Replacement (B4)/Refurbishment (B	5)	

Maintenance (B2)/Repair (B3)

	Unit	Value		Unit	Value
Maintenance cycle*	UCC.		Replacement cycle*		
Auxiliary	Char		Electricity consumption	kWh	
Other resources	4ric		Replacement of worn parts		
Water consumption	Scenario m ³ kwh	26	* Described above if relevant		
Electricity consumption	kWh		r .		
Other energy carriers	MJ				
Material loss	kg		"Ad are		
VOC emissions	kg		- 3 -		

Operational energy (B6) and water consumption (B7)			End of Life (C1, C 70F				
Unit	Value	in inc.	Unit	Value			
m ³		Hazardous waste disposed	kg				
kWh		Collected as mixed construction we	kg				
MJ		Reuse	kg				
RW.		Recycling					
		Energy recovery					
		To landfill	kg				
	Unit m ³ kWh MJ	Unit Value m ³ kWh MJ	Unit Value m³ Hazardous waste disposed kWh Collected as mixed construction wasted isposed MJ Reuse kW Recycling Energy recovery	Unit Value Unit m³ Hazardous waste disposed kg kWh Collected as mixed construction wb. kg MJ Reuse kg kWV Recycling kg			

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	and the second				l/tkm	
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Pi	oduct sta	age		ruction lation ige	User stage					End of life stage			9	Beyond the . system bondaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

•					
Parameter	Unit	A1	A2	A3	A4
GWP	kg CO ₂ -eq	1,47E+02	2,83E+00	1,17E+00	6,69E+00
ODP	kg CFC11 -eq	2,66E-06	5,63E-07	1,40E-07	1,37E-06
POCP	kg C ₂ H ₄ -eq	3,21E-02	4,50E-04	5,68E-04	1,05E-03
AP	kg SO ₂ -eq	3,69E-01	8,73E-03	8,04E-03	1,73E-02
EP	kg PO ₄ ³⁻ -eq	2,52E-01	1,39E-03	5,06E-03	2,38E-03
ADPM	kg Sb -eq	1,24E-04	6,35E-06	1,34E-05	1,59E-05
ADPE	MJ	8,12E+02	4,51E+01	1,35E+01	1,10E+02

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

SPENNCON RAIL

Resource use					
Parameter	Unit	A1	A2	A3	A4
RPEE	MJ	2,73E+02	8,25E-01	1,09E+02	2,00E+00
RPEM	MJ	5,75E+00	0,00E+00	3,81E+00	0,00E+00
TPE	MJ	2,79E+02	8,25E-01	1,13E+02	2,00E+00
NRPE	MJ	8,39E+02	4,65E+01	2,01E+01	1,13E+02
NRPM	MJ	1,38E+01	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	8,53E+02	4,65E+01	2,01E+01	1,13E+02
SM	kg	5,74E+01	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	6,40E-05	0,00E+00	1,78E-02	0,00E+00
NRSF	MJ	2,68E+02	0,00E+00	0,00E+00	0,00E+00
W	m ³	4,08E+02	1,10E-02	4,76E-02	2,68E-02

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1	A2	A3	A4	
HW	kg	1,70E-01	2,52E-05	1,32E-02	6,04E-05	
NHW	kg	2,06E+01	4,10E+00	2,61E+00	1,03E+01	
RW	kg	INA*	INA*	INA*	INA*	
HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed						

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

End of life - Output flow

•					
Parameter	Unit	A1	A2	A3	A4
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	2,59E+00	0,00E+00	8,45E+00	0,00E+00
MER	kg	7,15E-04	0,00E+00	2,83E-01	0,00E+00
EEE	MJ	INA*	INA*	INA*	INA*
ETE	MJ	INA*	INA*	INA*	INA*
CP. Components for rouse: MP. Materials for recycling: MEP. Materials for operay, recovery: EEE Experted electric operay; ETE Experted thermal					

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
El-mix, Norway (kWh)	ecoinvent 3.4	31,04	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system. LCA.no report number 04.18

Vold, M. og Edvardsen, T. (2014) EPD-generator for betongindustrien, bakgrunnsinformasjon for verifisering, OR 04.14.

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 020 Part B for Concrete and concrete elements. Ver. 2.0 October 2018, EPD-Norge.

epd-r	IOIGE.NO	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo 0303 Oslo Norway	Phone: e-mail: web:	+47 97722020 post@epd-norge.no www.epd-norge.no
SPENNCO	DNSOLIS DN RAIL	Owner of the declaration Spenncon Rail AS Hensmoveien 101 3516 Hønefoss	Phone: Fax: e-mail: web:	+47 91 34 68 03 geir-olav.larsen@consolis.com www.consolis.com
🖒 Østfold	forskning	Author of the Life Cycle Assessment Østfoldforskning AS Stadion 4 1671 Kråkerøy	Phone: Fax: e-mail: web:	+47 69 35 11 00 +47 69 34 24 94 www.ostfoldforskning.no
LC,	no	Developer of EPD generator LCA.no AS Dokka 1C 1671 Kråkerøy	Phone: e-mail: web:	+47 916 50 916 post@lca.no www.lca.no