

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Norcem AS
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-2336-1064-EN
Registration number:	NEPD-2336-1064-EN
ECO Platform reference number:	-
Issue date:	25.08.2020
Valid to:	25.08.2025

Norcem Standardsement FA justert, Brevik - CEM II/ B-M 42,5 R eng.

Norcem AS

www.epd-norge.no

General information

Product:

Norcem Standardsement FA justert, Brevik - CEM II/ B-M 42,5 R eng.

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: <u>post@epd-norge.no</u>

Declaration number:

NEPD-2336-1064-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR EN 16908:2017 Cement and building lime

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 tonne Norcem Standardsement FA justert, Brevik - CEM II/ B-M 42,5 R eng.

Declared unit with option:

A1,A2,A3,A4

Functional unit:

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

Ellen Soldal, Research Scientist

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Norcem AS Contact person: Petter Thyholdt Phone: +47 22 87 84 00 e-mail: petter.thyholdt@norcem.no

Manufacturer:

Norcem AS

Place of production:

Norcem AS, Brevik

Management system:

Miljøstyringssystem ISO 14001-sertifisert(S-007) Kvalitetssikriingssystem ISO 9001sertifisert (S-006)

Organisation no:

934 949 145

Issue date:

25.08.2020

Valid to:

25.08.2025

Year of study:

2020

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using eEPD v4.0 from LCA.no Approval: Company specific data are:

Collected/registered by:	Sigrun Bremseth
Internal verification by:	Petter Thyholdt

Approved:

Product

Product description:

Norcem Standardsement FA adjusted is produced for shorter periods due to challenging access to fly ash. Standardsement FA adjusted is produced with 13% fly ash and 9% limestone filler. The clinker content will be approximately the same as ordinary Standardsement FA. The cement can be used as an ordinary Standardsement FA except in the sulphate resistance classes SuR1 and SuR2 classes according to NS-EN206.

Product specification

Portland-composite cement

Materials	%
Standard clinker	72,9
Fly ash	13,8
Limestone filler	8,4
Gypsum	4,9

LCA: Calculation rules

Declared unit:

1 tonne Norcem Standardsement FA justert, Brevik - CEM II/ B-M 42,5 R eng.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
SCM	TI, Denmark	EPD	2013
Additives	ecoinvent 3.4	Database	2017
Aggregate	ecoinvent 3.5	Database	2017
Raw materials, Mineral	LCA.no	Database	2018
SCM	LCA.no	Database	2019
SCM	LCA.no estimate	Waste product, no impacts	2020

Technical data:

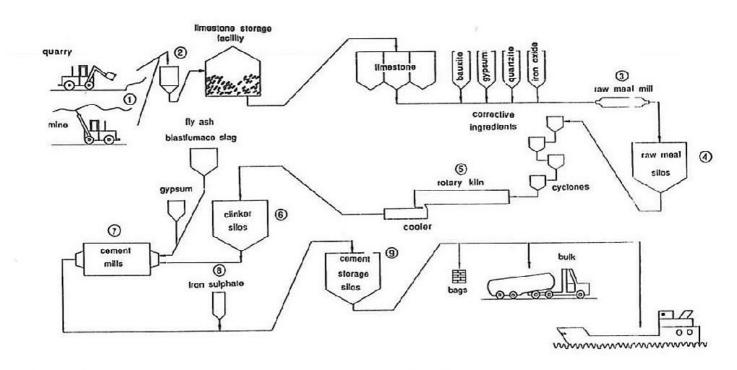
CEM II/B-M 42,5 R

Market:

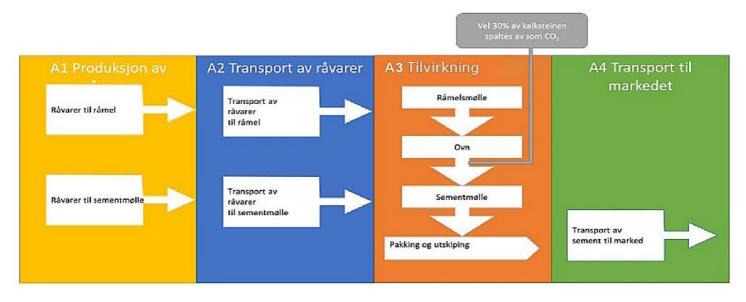
Reference service life, product

Depending of area of use

Reference service life, building


Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.



System boundary:

From raw materials extraction to market.

- 1. Uttak av kalkstein fra gruve og dagbrudd
- 2. Knusing av kalkstein
- 3. Maling av kalkstein og tilsetningstoffer til råmel
- 4. Siloer for lagring og homogenisering
- 5. Brenning av klinker i roterende ovn der materialene når en temperatur på 1450°C
- 6. Siloer for lagring av klinker
- 7. Maling av klinker med gips og andre tilsetninger for produksjon av sement
- 8. Tilsetning av jernsulfat
- 9. Lagring og utsendelse av sementen

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD. Transport in the A4 is calculated per trip from Brevik to silo (including loading, unloading and empty return). The number of km to the silo is described in a separate table.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck					l/tkm	
Railway					l/tkm	
Boat	50,0 %	Transport Norcem Brevik - silo Slemmestad, Kristiansand, Sjursøya, Vige	1	0,005051	l/tkm	0,01
Other Transportation					l/tkm	

Additional A4 information	Unit/Range	Value
Transport Norcem, Brevik - silo Slemmestad. Kristiansand, Sjursøya, Vige	km	163

Assembly (A5)		Use (B1)			
•	Unit	Value		Unit	Valu
Auxiliary	kg				
Water consumption	m ³				
Electricity consumption	kWh		7		
Other energy carriers	MJ]		
Material loss	kg				
Output materials fr ste treatment	kg]		
Dust in the air	kg]		
VOC emissions	kg				

Maintenance (B2)/Repair (B3)

Maintenance (B2)/Repair (B3)			Replacement (B4)/Refurbishment (B5)		
	Unit	Value		Unit	Value
Maintenance cycle*	SCO.		Replacement cycle*		
Auxiliary	Char.		Electricity consumption	kWh	
Other resources	4/10	-	Replacement of worn parts		
Water consumption	m ³	26	Replacement cycle* Electricity consumption Replacement of worn parts * Described above if relevant		
Electricity consumption	kWh		t a		
Other energy carriers	MJ		47.		
Material loss	kg		· AA		
VOC emissions	kg		- Ar-		

Operational energy (B6) and water consumption (B7)

	Unit	Value	in the	Unit	Value
Water consumption	m ³		Hazardous waste disposed	kg	
Electricity consumption	kWh		Collected as mixed construction was	kg	
Other energy carriers	MJ		Reuse	kg	
Power output of equipment	K/V		Recycling		
			Energy recovery		
			To landfill	kg	

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck					l/tkm	
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage			instal	ruction lation age	User stage							End of I	life stage	•	Beyond the . system bondaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	W aste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1-A3	A4
GWP	kg CO ₂ -eq	5,81E+02	2,61E+00
ODP	kg CFC11 -eq	3,37E-06	4,88E-07
РОСР	kg C ₂ H ₄ -eq	8,37E-03	5,25E-04
AP	kg SO ₂ -eq	2,55E-01	1,97E-02
EP	kg PO ₄ ³eq	6,12E-02	4,17E-03
ADPM	kg Sb -eq	7,77E-05	8,13E-07
ADPE	MJ	1,14E+03	3,75E+01

AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Remarks to environmental impacts

The GWP parameter (A1-A3) for the cement content includes 134.1 kg CO2-eq. from the combustion of alternative fossil fuels during clinker production. In accordance with the "polluter pays" principle / EN 15804 /, the emissions will be added to the production system that caused the waste. In this EPD, the CO2 contribution from alternative fossil fuels has not been deducted. This makes it easier to compare calculated global warming of the cement regardless of the status of the waste in different countries.

HEIDELBERGCEMENTGroup

Resource use			
Parameter	Unit	A1-A3	A4
RPEE	MJ	5,44E+02	2,06E-01
RPEM	MJ	0,00E+00	0,00E+00
TPE	MJ	5,44E+02	2,06E-01
NRPE	MJ	1,18E+03	3,78E+01
NRPM	MJ	0,00E+00	0,00E+00
TRPE	MJ	1,18E+03	3,78E+01
SM	kg	2,03E+02	0,00E+00
RSF	MJ	8,65E+02	0,00E+00
NRSF	MJ	1,08E+03	0,00E+00
W	m ³	2,27E-01	3,42E-03

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1-A3	A4
HW	kg	3,06E-04	1,58E-05
NHW	kg	5,02E+01	1,82E-01
RW	kg	INA*	INA*
HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed			
"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed			

End of life - Output flow

Parameter	Unit	A1-A3	A4
CR	kg	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00
EEE	MJ	INA*	INA*
ETE	MJ	INA*	INA*
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy			
"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed			

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
El-mix, Norway (kWh)	ecoinvent 3.4	31,04	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

lversen et al., (2018) eEPD v3.0 - Background information for EPD generator system, report 04.18

Vold et al., (2019) EPD generator cement - Background information and LCA data, report 03 and 04.19

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

EN 16908:2017 Cement and building lime - Environmental product declarations - Product category rules complementary to NS-EN 15804

Environmental management system ISO 14001- certified (S-007) Quality management system ISO 9001- certified (S-006)

epd-norge.no	Program operator and publisher The Norwegian EPD Foundation	Phone:	+47 23 08 80 00
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 22 87 84 00
NORCEM	Norcem AS	Fax:	
HEIDELBERGCEMENTGroup	Lilleakerveien 2A	e-mail:	petter.thyholdt@norcem.no
HEDELBERGCEMENT Gloup	0283 Oslo	web:	www.norcem.no
\frown	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	Fax:	90571091
	ECA:IIO AS	Fax.	
	Dokka 1C	e-mail:	post@lca.no
(LCA)			post@lca.no www.lca.no
	Dokka 1C	e-mail:	
no	Dokka 1C 1671 Kråkerøy	e-mail: web:	www.lca.no
	Dokka 1C 1671 Kråkerøy Developer of EPD generator	e-mail: web:	www.lca.no