

EPD

Environmental Product Declaration

Medium-voltage gas-insulated switchgear PrimeGear ZX0 feeder-12.12.25

Production site: Xiamen, China

DOCUMENT KIND	IN COMPLIANCE WITH	IN COMPLIANCE WITH			
Environmental Product Declaration	ISO 14025 and EN 5069	ISO 14025 and EN 50693			
PROGRAM OPERATOR	PUBLISHER	PUBLISHER			
The Norwegian EPD Foundation	The Norwegian EPD Fo	The Norwegian EPD Foundation			
REGISTRATION NUMBER OF THE PROGRAM OPERATOR NEPD-9219-8799	ISSUE DATE 2025-02-24				
VALID TO 2030-02-24	status Approved	SECURITY LEVEL Public			
OWNING ORGANIZATION	ABB DOCUMENT ID	REV.	LANG.	PAGE	
ABB Switzerland Ltd, Group Technology Management	3XAA054372	3XAA054372 A EN 1/15			
© Copyright 2025 ABB. All rights reserved.		'			

EPD Owner ABB Switzerland Ltd, Group Technology Management Organization No. CHE-101.538.426 Manufacturer name ABB Xiamen Switchgear Co., Ltd. FangShanXiEr Road, Xiang'an District, and address Xiamen, Fujian, 361101, P. R. China Company contact kassel-xin.Li@cn.abb.com **Product Manager** Program operator The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway phone: +47 23 08 80 00, email: post@epd-norge.no Declared product Medium-voltage Gas-insulated Switchgear PrimeGear ZX0 Feeder-12.12.25 Product The PrimeGear ZX0 is a gas-insulated switchgear for the single busbar system which description is used to distribute electric power in a variety of demanding applications such as energy supply for public utilities, steel work factories, automobile industry, airports, harbors, or railways. Functional unit To distribute, protect, and control the electricity in a power distribution network, with a nominal voltage of 12 kV, use rate of 100 %, and load rate of 35 %, during a service life of 20 years in China. Reference flow A single PrimeGear ZX0 feeder-12.12.25 switchgear, including related accessories and packaging. Independent Independent verification of the declaration and data, according to ISO 14025:2010

☐ INTERNAL 図 EXTERNAL

Independent verifier approved by EPD-Norge: Elisabet Amat

Signature:

Approved by Håkon Hauan, CEO EPD-Norge Signature: Reference PCR EN 50693:2019 – Product Category Rules for Life Cycle Assessments of Electronic and Electrical Products and Systems.

EPDItaly007 - Electronic and Electrical Products and Systems, Rev. 3.1, 2024/11/12. EPDItaly015 - Electronic and Electrical Products and Systems - Switchboards, Rev.

2.0, 2024/07/01.

Program The Norwegian EPD Foundation/EPD-Norge, General Programme Instructions 2024. Version 4.0 dated 2024.09.18. instructions

LCA study This EPD is based on the LCA study described in the LCA report 3XAA054367.

EPD type Specific product **EPD** scope Cradle-to-grave

Product RSL 20 years

verification

Manufacturing (suppliers): Manufacturing (ABB): Downstream: Geographical representativeness Global China China

Reference year 2023

LCA software SimaPro 9.5 (2023) LCI database Ecoinvent v3.9.1 (2022)

Comparability EPDs published within the same product category, though originating from different

programs, may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However,

variations and deviations are possible.

Liability The owner of the declaration shall be liable for the underlying information and evidence. EPD-Norge shall not be liable with respect to manufacturer, life cycle

assessment data, and evidence.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	3XAA054372	Α	EN	2/15	
© Copyright 2025 ABB. All rights reserved.						

Contents

Sustainability at ABB	4
General Information	
Constituent Materials	
LCA Background Information	
Inventory Analysis	
Environmental Indicators	
Sensitivity analysis	
Additional Environmental Information	
References	

Sustainability at ABB

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation, and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels.

At ABB, we actively contribute to a more sustainable world, leading by example in our own operations and partnering with customers and suppliers to enable a low-carbon society, preserve resources, and promote social progress.

Learn more on our website <u>global.abb/group/en/sustainability</u> or scan the QR code.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	3XAA054372	Α	EN	4/15

General Information

This Environmental Product Declaration is a "specific product EPD", and the declared product is the PrimeGear ZXO, including related accessories and packaging.

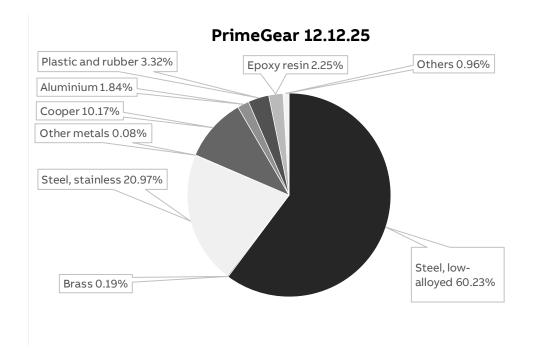
The PrimeGear ZX0 is a gas-insulated switchgear for the single busbar system which is used to distribute electric power in a variety of demanding applications such as energy supply for public utilities, steel work factories, automobile industry, airports, harbors, or railways.

General technical information of the PrimeGear ZXO are presented below.

	Description	
Config.	Circuit breaker	VD4X0 12.12.25
Coning.	Current sensor	KECA 80 C85
	Voltage sensor	KEVA_24_C22c
	Width	0.6 m
Size	Height	2.350 m
	Depth	1.315 m
	Rated voltage [kV]	12
	Rated power frequency withstand voltage (Ud) [kV]	42
	Rated lightning impulse withstand voltage (Up) [kV]	75
	Rated current [A]	1250
Ratings	Rated short-time withstand current (Ik) [kA]	25
	Rated peak withstand current (Ip) [kA]	63
	Rated duration of short-circuit (tk) [s]	4
	Rated frequency (fr) [Hz]	50/60
	Insulating gas	Dry air

The product is manufactured by ABB Xiamen Switchgear Co., Ltd. located in Xiamen. The manufacturing site is certified according to the following standards:

- ISO 9001:2015 Quality Management Systems
- ISO 14001:2015 Environmental Management Systems
- ISO 45001:2018 Occupational Health and Safety Management Systems
- ISO 50001:2018 Energy management systems


STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	3XAA054372	Α	EN	5/15	
© Convigate 2025 ADD All rights recoved						

Constituent Materials

The constituent materials of PrimeGear ZXO are presented below.

Туре	Material	Weight [kg]	Weight %
	Steel, low-alloyed	312.5	60.23%
	Steel, stainless	108.8	20.97%
Metals	Copper	52.7	10.17%
Metais	Aluminum	9.5	1.84%
	Brass	1.0	0.19%
	Other metals	0.4	0.08%
Plastics	Plastic and Rubber	17.2	3.32%
Others	Epoxy resin	11.7	2.25%
Others	Others	5.0	0.96%
Total		518.9	100%

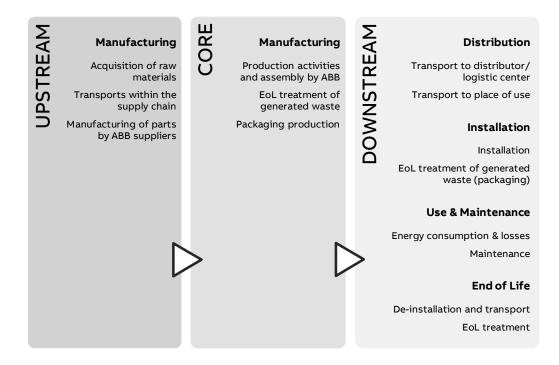
	DOCUMENT ID.	REV.	LANG.	PAGE
Approved Public	3XAA054372	Α	EN	6/15

The constituent materials of the packaging and accessories are presented below. 1 pcs is assumed per pallet.

Description	Material	Weight [kg]	Weight %
Packaging box	Plywood	70.00	94.11
Fasteners	Steel	0.335	0.45
Plastic bag	PE	0.615	0.83
Packing strips	PET	0.266	0.36
Drying agent	Kaolinite	3.158	4.25
Total		74.374	100

LCA Background Information

Functional Unit


The functional unit of this study is to distribute, protect, and control the electricity in a power distribution network, with a nominal voltage of 12 kV, use rate of 100 %, and load rate of 35 %, during a service life of 20 years in China. The reference flow is a single PrimeGear ZX0 Feeder-12.12.25 device, including related accessories and packaging.

Note, the reference service life (RSL) of 20 years is a theoretical period selected for calculation purposes only – this is not representative for the minimum, average, nor actual service life of the product.

System Boundaries

The life cycle assessment is a "cradle-to-grave" analysis, and the system boundaries are defined according to EN 50693, as required by the PCR. For transparency reasons, the manufacturing stage is further divided into an upstream and core stage.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	3XAA054372	Α	EN	7/15	

Data quality

Both primary and secondary data are used. The main sources for primary data are the bill of materials (BOM), CAD-files, technical drawings, and site-specific foreground data provided by ABB.

For all processes for which primary data are not available, generic background data originating from the ecoinvent v3.9.1 database, with system model "allocation, cut-off by classification", are used. The database Industry Data 2.0 is also used for chemical substance which is not available by ecoinvent. The LCA software used for the calculations is SimaPro 9.5.

Allocation rules

The utility consumption and waste generation by ABB, in the core manufacturing stage, is allocated to the production of one reference product according to applicable rules. For the end-of-life allocation, the "Polluter Pays" principle is adopted according to what is defined in the CEN/TR 16970 standard. However, the potential benefits and avoided loads from recovery and recycling processes are not considered because it is not required by the PCR.

Cut-off criteria

According to EPDItaly015, the cut-off criteria can be set to a maximum of 2 % of the overall environmental impacts. In this LCA, stickers have been excluded as their weights are negligible. Process of phosphating has also been excluded due to the unavailability of data and complexity of modelling.

© Convision 2005 ARR All visible vectorial					
Approved	Public	3XAA054372	Α	EN	8/15
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

Inventory Analysis

Manufacturing Stage (upstream)

The life cycle inventory in the upstream manufacturing stage is based on the primary data available from ABB. Datasets are applied accordingly, to the best of our knowledge, to represent each material, manufacturing process, and surface treatment. Modelling decisions and assumptions that are highly relevant to the results are as following:

Epoxy is modelled on a chemical level, i.e., each chemical used is considered and mapped with the most representative dataset available.

Additionally, supply chain transports are added as far as data is available between ABB, the suppliers, and sub-suppliers. Only primary suppliers are considered. The rest of the transports are assumed to already be included in ecoinvent's "market for"-processes.

Manufacturing Stage (core)

In the core manufacturing stage, utility consumption and waste generation at the ABB manufacturing site are accounted for. The packaging materials and accessories associated with the product are also considered. Modelling decisions and assumptions that are highly relevant to the results are as following:

- 61% Nuclear power is considered, which is procured by the ABB manufacturing site through a distribution agreement with the local utility. However, due to the lack of life cycle based residual mix data, other electricity mixes in the LCA are not calculated with residual mix.
- The remaining 39% is internally produced from solar panels installed on the roof of the Xiamen manufacturing site.

Distribution

The transport distance from the ABB manufacturing site to the site of installation is assumed to be 300 km by lorry, as suggested by the PCR EPDItaly012/015, as the actual distance is unknown. The environmental impacts can be multiplied accordingly if the actual distance is known.

	Dataset	Amount	Unit	Represent.
Transport	Transport, freight, lorry 16-32 metric ton, EURO4 {RoW} market for transport, freight, lorry 16-32 metric ton, EURO4 Cut-off, S	300	km	PCR

Installation

The installation phase only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the packaging materials used.

	Scenario	Transport	Representation
Packaging End-of-Life	ABB_WS_Packaging Waste Scenario_China literature 2022 - Polluter pays	100 km by lorry (assumption)	China

^{*} Due to lack of data, 100% energy recovery is assumed for wood, and 100% landfill is assumed for ceramics (e.g., kaolinte)

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	3XAA054372	Α	EN	9/15
© Copyright 2025 ABB. All rig	hts reserved		·		

Use

The use stage considers the reference power losses over the reference service life as defined in the functional unit. This is calculated using the following formula, according to PCR EPDItaly015:

$$E_{use}[kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000} = \frac{40.17 \text{ W} * 8760 \text{ hours} * 10 \text{ years} * 100 \%}{1000} = 7038.21 \text{ kWh}$$

Where:

- *E*_{use} = Total energy use over the reference service life
- Puse = Reference power consumption in watts
- RSL = Reference Service Life in years
- α = Use time rate
- 8760 is the number of hours in a year
- 1000 is the conversion factor from W to kW

Energy mix	Source	Amount	Unit
Electricity, medium voltage {CN} market group for Cut-off, S	Ecoinvent v3.9.1	0.948	kg CO₂- eq/kWh

Maintenance is not considered because the product is designed as maintenance free product. Even if some maintenance happens during the use stage, from the environmental impacts point of view it can be omitted from the analysis due to negligible energy is consumed.

End of life

Decommissioning of the product only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the product.

	Scenario	Transport	Representation
Product End-of-Life	IEC/TR 62635 (Annex D.3)*	100 km by lorry (assumption)	China

*A conservative approach is adopted by considering all parts as either: requiring selective treatment, difficult to process, or going through a separation process; no individual part is considered as a single recyclable material. Also, due to the transformer containing parts difficult to process through separation, these are all modelled as 100 % waste to landfill to represent the typical waste streams within China.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	3XAA054372	A	EN	10/15

Environmental Indicators

In accordance with the PCR EPDItaly007, the environmental impact indicators are determined by using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019.

ProductPrimeGear ZX0

			Cradle-	to-gate				
					Cradle-t	o-grave		
Impact	Unit	Total	UPSTREAM	CORE		DOWNS	STREAM	
category	Oilit	iotai	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
GWP – total	kg CO₂ eq.	1.02E+04	3.39E+03	-4.39E+01	3.44E+01	1.06E+02	6.67E+03	7.16E+01
GWP – fossil	kg CO₂ eq.	1.02E+04	3.30E+03	4.90E+01	3.44E+01	3.44E+00	6.71E+03	5.56E+01
GWP – biogenic	kg CO₂ eq.	7.03E+01	8.34E+01	-9.32E+01	1.20E-02	1.02E+02	-3.84E+01	1.59E+01
GWP – luluc	kg CO₂ eq.	7.36E+00	4.42E+00	2.13E-01	1.79E-02	1.11E-03	2.65E+00	6.97E-02
ODP	kg CFC-11 eq.	9.22E-05	7.33E-05	5.61E-06	5.44E-07	4.24E-08	1.21E-05	6.19E-07
AP	mol H+ eq.	1.01E+02	6.50E+01	4.14E-01	1.51E-01	1.80E-02	3.55E+01	2.60E-01
EP – freshwater	kg P eq.	5.99E+00	4.73E+00	2.62E-02	2.80E-03	6.09E-04	1.21E+00	1.77E-02
EP – marine	kg N eq.	1.32E+01	5.34E+00	1.42E-01	5.54E-02	9.17E-03	7.55E+00	1.08E-01
EP – terrestrial	mol N eq.	1.76E+02	9.32E+01	1.48E+00	5.93E-01	8.40E-02	8.04E+01	6.91E-01
POCP	kg NMVOC eq.	4.15E+01	1.94E+01	4.63E-01	2.03E-01	2.37E-02	2.12E+01	2.18E-01
ADP – minerals and metals	kg Sb eq.	6.99E-01	6.93E-01	6.73E-04	1.11E-04	6.93E-06	4.28E-03	4.72E-04
ADP – fossil	MJ, net calorific value	1.10E+05	4.12E+04	2.36E+03	4.87E+02	3.05E+01	6.52E+04	6.34E+02
WDP	m³ eq.	1.75E+03	9.48E+02	7.57E+01	2.15E+00	-7.12E-01	7.21E+02	7.75E+00

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	3XAA054372	Α	EN	11/15		
© Copyright 2025 ABB All rights received							

			Cradle-	to-gate				
					Cradle-t	o-grave		
Resource use parameters	Unit	Unit Total	UPSTREAM	CORE		DOWNS	TREAM	
	Oint		Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
PENRE	MJ, low cal. value	1.09E+05	4.06E+04	2.33E+03	4.87E+02	3.05E+01	6.52E+04	6.34E+02
PERE	MJ, low cal. value	1.50E+04	6.40E+03	1.60E+03	6.19E+00	5.48E-01	6.95E+03	6.18E+01
PENRM	MJ, low cal. value	5.66E+02	5.34E+02	3.22E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERM	MJ, low cal. value	1.02E+03	2.60E+01	9.94E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ, low cal. value	1.10E+05	4.12E+04	2.36E+03	4.87E+02	3.05E+01	6.52E+04	6.34E+02
PERT	MJ, low cal. value	1.60E+04	6.43E+03	2.60E+03	6.19E+00	5.48E-01	6.95E+03	6.18E+01
FW	m³	5.07E+01	3.05E+01	2.15E+00	6.94E-02	-1.20E-02	1.77E+01	2.99E-01
MS	kg	1.87E+02	1.87E+02	1.07E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PERRI: Use of renewable primary energy resources used as raw material; PERT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

			Cradle-	to-gate				_
					Cradle-t	o-grave		
System output	Unit	Total	UPSTREAM	CORE		DOWNS	STREAM	
indicators	indicators	Total	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life
HWD	kg	5.55E-01	5.10E-01	5.64E-03	3.15E-03	1.81E-04	3.36E-02	2.40E-03
NHWD	kg	1.99E+03	1.37E+03	1.04E+01	2.36E+01	2.18E+00	4.94E+02	8.81E+01
RWD	kg	1.78E-01	8.58E-02	2.15E-02	9.83E-05	8.01E-06	6.90E-02	1.25E-03
MER	kg	7.30E+01	3.58E-01	9.19E-01	0.00E+00	7.03E+01	0.00E+00	1.45E+00
MFR	kg	6.08E+02	1.04E+02	4.69E+01	0.00E+00	5.26E-01	0.00E+00	4.56E+02
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ETE	МЈ	2.97E+02	1.87E+00	4.00E+00	0.00E+00	2.82E+02	0.00E+00	9.30E+00
EEE	МЈ	1.65E+02	9.49E-01	2.22E+00	0.00E+00	1.57E+02	0.00E+00	5.17E+00

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	3XAA054372	Α	EN	12/15

Sensitivity analysis

This chapter presents the results of a sensitivity analysis, to understand how the impact category "GWP – total" varies for PrimeGear ZXO with the emission factor from latest IEA energy mix for China in use stage.

Emission factor for the IEA energy mix used in the use stage

Energy mix	Source	Amount	Unit
Electricity, medium voltage {CN} market group for Cut-off, S	IEA 2021	0.7428	kg CO₂- eq/kWh

Sensitivity analysis for impact category "GWP - total" [kg CO₂-eq]

Scenario	Total	UPSTREAM	CORE		DOWNS	STREAM	
Scenario	iotai	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
Declared scenario Use stage: Energy mix source from Ecoinvent v3.9.1	1.02E+04	3.39E+03	-4.39E+01	3.44E+01	1.06E+02	6.67E+03	7.16E+01
IEA 2021 Use stage: Energy mix source from IEA 2021	8.79E+03	3.39E+03	-4.39E+01	3.44E+01	1.06E+02	5.23E+03	7.16E+01

Additional Environmental Information

Circularity Values

The recyclability potential of the product (excluding packaging) is calculated by dividing "MFR: material for recycling" in the end-of-life stage by the total weight of the product. As a result, the recyclability potential of the product is 87.8 % presented below.

	Recyclability potential		
PrimeGear ZX0 12.12.25	87.8 %		

Greenhouse gas emissions from the use of electricity in the manufacturing phase

Production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process.

Energy mix	Source	Amount	Unit
ABB_Electricity mix Xiamen Factory {CN}_Nuclear 61.16%-Solar 38.84%_2023 System	Ecoinvent v3.9.1	0.0467	kg CO ₂ - eq/kWh

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	3XAA054372	А	EN	13/15
© Copyright 2025 ABB. All rights reserved.					

Dangerous substances

The product complies with REACH and RoHS directive requirements and does not contain any of the listed materials in excess of the authorized proportions. For further information about REACH and RoHS, please visit the ABB webpage:

https://new.abb.com/contact/form.

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

Carbon footprint has not been worked out for the product.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	3XAA054372	A	EN	14/15

References

ecoinvent. ecoinvent v3.9.1 (2022). https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-9-1/

European Committee for Standardization. (2019). *Product category rules for life cycle assessments of electronic and electrical products and systems* (EN 50693:2019).

European Committee for Standardization. (2019). Sustainability of constructions - Environmental product declarations (EN 15804:2012+A2:2019).

Eurostat. (2021). Packaging waste by waste management operations.

 $https://ec.europa.eu/eurostat/databrowser/view/ENV_WASPAC/default/table?lang=en/default/table?en/default/table?en/default/table?en/default/table?en/default/table?en/default/t$

ICMQ S.p.A. (2024). PCR EPDItaly007-Electronic and electrical products and systems, rev. 3.1 (2024-11-12). EPDItaly. https://www.epditaly.it/en/pcr_/epditaly007pcr-for-electronic-and-electrical-products-and-systems-rev-3-1/

ICMQ S.p.A. (2024). PCR EPDItaly015 - Electronic and electrical products and systems - switchboards, rev. 2.0 (2024-07-01). EPDItaly. https://www.epditaly.it/en/view-pcr/

ICMQ S.p.A (2020b). Regulations of the EPDItaly Programme Regulations, rev. 5.2 (2020-02-16). EPDItaly.

https://www.epditaly.it/en/wp-content/uploads/2016/12/EPDITALY-Regulament_rev-5.2_EN.pdf

International Electrotechnical Commission. (2012). *Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment*, Edition 1.0 (2012-10-1) (IEC/TR 62635).

International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Principles and framework (ISO Standard No. 14040:2006). https://www.iso.org/standard/37456.html

International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Requirements and guidelines (ISO Standard No. 14044:2006). https://www.iso.org/standard/38498.html

PRé Sustainability. (2023). SimaPro (version 9.5) [computer software]. https://pre-

sustainability.com/solutions/tools/simapro/

SeaRates. (2022). Shipping Distances & Time Calculator. https://www.searates.com/services/distances-time

The Norwegian EPD Foundation/EPD-Norge, General Programme Instructions 2024. Version 4.0

dated 2024.09.18. https://www.epd-norge.no/getfile.php/1370328-

1729002188/Dokumenter/GPI%20Det%20norske%20EPD%20programmet%20ver4%20%2018-09-2024%20final.pdf

Jitka N., Natalie V.(2024). Life Cycle Assessment Report: KEVA 24 C10c, KEVA 24 C11c, KEVA 24 C21c, KEVA 24 C22c, KEVA 24 C22c,

Jaromir P., Natalie V., Anna Z. (2024). Environmental Product Declaration: Indoor Current Sensor KECA 80 C85 (EPD No. NEPD-7819-7156-EN). https://www.epd-norge.no/epder/byggevarer/elektroniske-og-elektriske-komponenter-kabler-produkter/indoor-current-sensor-keca-80-c85

Wade H. (2025). Life Cycle Assessment Report: Medium-voltage Gas-insulated Switchgear PrimeGear ZX0 Feeder-12.12.25 (LCA No. 3XAA054367).

JunQing X. (2025). Life Cycle Assessment Report: Vacuum Circuit-breaker VD4X0 12.12.25 (LCA No. 3XAA062054).

Program Operator and publisher

The Norwegian EPD Foundation Ph. +47 23 08 80 00
Post Box 5250 Majorstuen, email post@epd-norge.no
0303 Oslo, Norway web www.epd-norge.no

Owner of the declaration

ABB Switzerland Ltd, Group Technology Management Brown Boveri Straße 6, 5400 Baden, Switzerland

web www.abb.com

Author Wade Huang Ph. +86 592 6026033 ABB (China) Ltd. email Wadexiaobo. huang@cn.abb.com

No.885, FangShanXiEr Road, Xiang'an District, Xiamen, Fujian, web www.abb.com 361001, P.R.China

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	3XAA054372	Α	EN	15/15