

Environmental Product Declaration

In accordance with ISO 14025 and EN 15804 +A2

The Norwegian EPD Foundation

Owner of the declaration: Norsk Wavin AS

Program holder and publisher: The Norwegian EPD foundation

Declaration number: NEPD-3587-2251-EN

Registration Number: NEPD-3587-2251-EN

Issue date: 16.08.2022 **Valid to:** 16.08.2027

Ver2-101122

Wafix PP

Wafix PP system is made from the PP (Polypropylene), which gives both pipes and fittings good physical and chemical properties.

Manufacturer AB Svenska Wavin

General information

Product:

Wafix PP pipe BK, GY, WT or BR with or without socket, chamfered, plain; DN32, 40, 50, 75, 90, 110, 125, 160, 200.

Program Operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Tlf: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration Number:

NEPD-3587-2251-EN

This declaration is based on Product Category Rules:

CEN standard EN 15804:2012+A2:2019 serves as core PCR, supplied with NPCR Part A, Version 2.0.

Statements:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit:

1 kg Wafix PP Pipe

Declared unit with option:

A1,A2,A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

Not applicable.

Verification:

Independent verification of the declaration and data, according to ISO14025:2010

internal

external X

Harry van Ewijk, SGS Search Independent verifier approved by EPD Norway

Owner of the declaration:

Norsk Wavin AS

Contact person: Matteo Tagliaferri

Phone: +31 623193684

e-mail: matteo.tagliaferri@wavin.com

Manufacturer:

AB Svenska Wavin Kjulamon 6, 635 06, Eskilstuna, Sweden Phone: +46 (0) 16 541 00 00 e-mail: kundservice.se@wavin.com

Place of production:

Kjulamon 6, 635 06, Eskilstuna, Sweden

Management system:

EN ISO 9001:2015 and EN ISO 14001:2015

Organization no:

823355092

Issue date:

16.08.2022

Valid to:

16.08.2027

Year of study:

2020

Comparability:

EPDs from other programmes than the Norwegian EPD foundation may not be comparable.

The EPD has been worked out by:

Lisa Overmars and Emma Thunnissen, Ecochain Technologies

Approved (Manager of EPD Norway)

Product

Product description:

The Wafix PP system is made from the recyclable PP (Polypropylene), which gives both pipes and fittings good physical and chemical properties. The PP material used has a high E-module, which gives the pipes a good length stiffness and a large impact strength. That is why the Wafix PP system can withstand both large internal and external loads during assembly and installation - even at minus degrees. The covered diameters are described in the Technical Data section.

Product specification:

A typical composition of the pipes covered by this EPD is as follows:

Materials	%
PP	98,5%
Additives	1,0%
Rubber gasket	0,1%
Packaging	0,4%

The physical properties of the pipes covered in this EPD are:

- Pipe material: Polypropylene (PP-B)
- Density $\sim 901 \text{ kg/m}^3$
- E-Modul ~ 1.800 Mpa
- Expansion linear ~ 0,15 mm/mK
- Thermal Conductivity w / 20 °C: 0.24 W / mK
- Operating temperature: 90°C
- Short-term peak temperature: 100° C (< 30 ltr/min in 2 min.)

The color of the pipe is either black (BK, RAL 9005), gray (GY, RAL 7037), white (WT, RAL 9003) or brown (BR, RAL 8012).

Technical data:

The declared unit of this EPD is 1 kg Wafix PP Pipe. The results per kg are based on the product 'Wafix PP Pipe BR 110 SN8 L=6' ('base product'). The number 110 in the product name refers to the diameter, which is equal to 110 mm. It follows that the pipe diameters can be derived from the product names by taking the number after the color abbreviations.

The table below provides the products covered with this EPD. The selected base product is representative for all products described in this table; deviations of the LCA results of the other products compared to the base product are not more than 10%.

The list below provides the mass per 1 meter pipe (including packaging). These masses should be used to calculate the LCA results per 1 meter pipe, by multiplying the results presented on page 8-11 with the weight specified below.

Product	Mass (kg/meter)	Product	Mass (kg/meter)
Wafix PP Pipe WT 32 L=1 S/CH	0,17	Wafix PP Pipe GY 75 L=4 PL/CH	0,53
Wafix PP Pipe WT 32 L=2 w/socket	0,17	Wafix PP Pipe GY 75 L=3 PL/CH	0,53
Wafix PP Pipe WT 32 L=3 PL/CH	0,17	Wafix PP Pipe GY 75 L=3 S/CH	0,53
Wafix PP Pipe WT 32 L=3 S/CH	0,17	Wafix PP Pipe GY 75 L=2 S/CH	0,53
Wafix PP Pipe GY 32 L=3 PL/CH	0,17	Wafix PP Pipe GY 75 L=1,5 S/CH	0,54
Wafix PP Pipe GY 32 L=2 S/CH	0,17	Wafix PP Pipe GY 75 L=1 S/CH	0,54
Wafix PP Pipe GY 32 L=1 S/CH	0,17	Wafix PP Pipe GY 75 L=0,5 S/CH	0,54
Wafix PP PipeWT 32 L=0,5 w/socket	0,17	Wafix PP Pipe BK 75 L=5	0,67
Wafix PP Pipe GY 32 L=1,5 S/CH	0,17	Wafix PP Pipe BK 75 L=3	0,67
Wafix PP Pipe GY 32 L=0,5 S/CH	0,18	Wafix PP Pipe BK 90 L=1	0,80
Wafix PP Pipe WT 32x3,0 L=4	0,27	Wafix PP Pipe BK 90 L=3	0,81
Wafix PP Pipe BK 32 L=3	0,27	Wafix PP Pipe BK 90 L=5	0,81
Wafix PP Pipe BK 32 L=5	0,28	Wafix PP Pipe BK 110 L=1 w/socket	1,13
Wafix PP Pipe WT 40 L=1 S/CH	0,22	Wafix PP Pipe BK 110 L=6 w/socket	1,13
Wafix PP Pipe WT 40 L=2 S/CH	0,22	Wafix PP Pipe BK 110 L=3 wo/socket	1,13
Wafix PP Pipe WT 40 L=3 S/CH	0,22	Wafix PP Pipe BK 110 L=3 w/socket	1,13
Wafix PP Pipe GY 40 L=3 PL/CH	0,22	Wafix PP Pipe GY 110 L=2 S/CH	1,13
Wafix PP Pipe WT 40 L=0,5 S/CH	0,22	Wafix PP Pipe GY 110 L=1,5 S/CH	1,13
Wafix PP Pipe GY 40 L=1,5 S/CH	0,22	Wafix PP Pipe GY 110 L=0,5 S/CH	1,13
Wafix PP Pipe GY 40 L=2 S/CH	0,22	Wafix PP Pipe GY 110 L=6 PL/CH	1,13
Wafix PP Pipe GY 40 L=1,25 S/CH	0,22	Wafix PP Pipe GY 110 L=6 S/CH	1,13
Wafix PP Pipe GY 40 L=1 S/CH	0,22	Wafix PP Pipe BK 110 L=5	1,13
Wafix PP Pipe GY 40 L=0,5 S/CH	0,22	Wafix PP Pipe GY 110 L=5 w/socket	1,13
Wafix PP Pipe WT 40x3,0 L=4	0,34	Wafix PP Pipe GY 110 L=4 S/CH	1,13
Wafix PP Pipe BK 40 L=5	0,34	Wafix PP Pipe BK 110 L=3	1,13
Wafix PP Pipe BK 40 L=3	0,34	Wafix PP Pipe GY 110 L=3 S/CH	1,13
Wafix PP Pipe WT 50 L=3 S/CH	0,28	Wafix PP Pipe GY 110 L=1 S/CH	1,14
Wafix PP Pipe WT 50 L=3 PL/CH	0,28	Wafix PP Pipe BR 110 SN8 L=6	1,28
Wafix PP Pipe GY 50 L=2 w/socket	0,28	Wafix PP Pipe BR 110 SN8 L=3	1,28
Wafix PP Pipe L/GY 50 L=3 w/socket	0,28	Wafix PP Pipe BR 110 SN8 L=2	1,28
Wafix PP Pipe GY 50 L=6 wo/socket	0,28	Wafix PP Pipe BR 110 SN8 L=1	1,29
Wafix PP Pipe WT 50 L=1 S/CH	0,28	Wafix PP Pipe BK 125 L=5	1,46
Wafix PP Pipe L/GY 50 L=1	0,28	Wafix PP Pipe GY 160 L=6 w/socket	2,34
Wafix PP Pipe L/GY 50 L=3 wo/socket	0,28	Wafix PP Pipe BK 160 L=5	2,34
Wafix PP Pipe GY 50 L=1,5 w/socket	0,28	Wafix PP Pipe GY 160 L=3 w/socket	2,34
Wafix PP Pipe WT 50 L=0,5 S/CH	0,28	Wafix PP Pipe GY 160 L=1 w/socket	2,36
Wafix PP Pipe GY 50 L=0,5	0,28	Wafix PP Pipe BR 160 SN8 L=6	2,66
Wafix PP Pipe WT 50x3,0 L=5	0,44	Wafix PP Pipe BR 160 SN8 L=3	2,67
Wafix PP Pipe BK 50 L=3	0,44	Wafix PP Pipe BR 160 SN8 L=2	2,67

Wafix PP Pipe BK 50 L=5	0,44	Wafix PP Pipe BR 160 SN8 L=1 S/CH	2,68
Wafix PP Pipe BK 75 L=1 w/socket	0,53	Wafix PP Pipe BR 200 SN8 L=6	4,16
Wafix PP Pipe BK 75 L=3 wo/socket	0,53	Wafix PP Pipe BR 200 SN8 L=3	4,17
Wafix PP Pipe BK 75 L=3 w/socket	0,53	Wafix PP Pipe BR 200 SN8 L=1	4,19
Wafix PP Pipe GY 75 L=6 PL/CH	0,53		

Market:

Europe, but the EPD is specific for Nordic countries.

Reference service life, product:

Lifetime on product calculated is 100 year.

Reference service life, building:

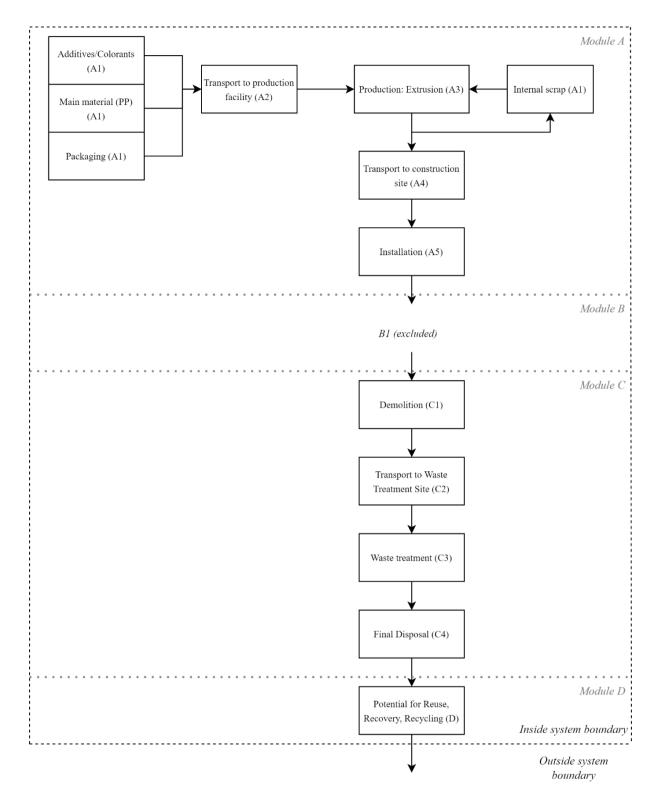
Equal to building service life.

LCA: Calculation rules

Declared unit:

1 kg Wafix PP Pipe

Data quality:


For module A1, specific data for product compositions as provided by the manufacturer are used. For module A2, transportation data of the raw materials used to the production site was collected. For module A3, energy consumption and waste production data was collected for production year 2020. The used background processes are derived from Ecoinvent 3.6.

Allocation:

Allocation was carried out in accordance with the provisions of the EN15804. All manufacturing inputs (energy and auxiliary materials) at production site level are allocated to different production processes, followed by allocation of the production processes to the products that are produced using these processes through mass allocation. No secondary materials have been used in the production process.

System boundary:

 $Modules\ A1-A5\ and\ C1-D\ are\ included.\ The\ figure\ below\ shows\ a\ (simplified)\ process\ tree.$

Cut-off criteria:

All relevant inputs and outputs - like emissions, energy and materials - have been taken into account in this LCA. In accordance with EN15804, the total neglected input flows per module does not exceed 5% of energy usage and mass.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to assembly/user (A4)

The transportation distance from Twist to Oslo was considered.

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance KM	Fuel/Energy consumption
Truck	50%	Unspecified	422	0,027 l diesel/tkm

Assembly (A5)

Product losses of 10% are considered. The installation is done manually, and therefore no energy is needed.

	Unit	Value
Material loss	kg	0,1
Output materials from waste treatment	kg	0,004

End of Life (C1, C3, C4)

Demolition is done manually, and therefore no energy is needed. The considered waste treatment for the pipe is 70% recycling, 20% incineration and 10% landfill.

	Unit	Value
Collected as mixed construction waste	kg	1,00
Reuse	kg	0
Recycling	kg	0,70
Energy recovery	kg	0,20
To landfill	kg	0,10

Transport to waste processing (C2)

The considered distances are 50 km to landfill, 100 km for energy recovery, and 250 km for recycling.

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance KM	Fuel/Energy consumption	
Truck	50%	Unspecified	200,0	0,027 l diesel/tkm	

Benefits and loads beyond the system boundaries (D)

For the PP, chemicals and additives, 0,67 kg of saved virgin PP was considered per kg material recycled (total of A5 en C3). The benefits from exported energy were calculation from the energy efficiencies for Northern countries reported by CEWEP, which is equal to an electrical efficiency of 11,0%, and a thermal efficiency of 72,6%. Energy recovery from all materials

(including rubber gasket and packaging) was considered. Substition of Norwegian electricity mix and district heating mix was assumed.

	Unit	Value
Saving of virgin PP	kg	0.51
Substition of electric energy	MJ	0,79
Substitition of thermal energy	MJ	5,18

Additional technical information

Not applicable.

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document. Recalculation to pipes with different diameters and lengths can be done based on the technical data specified on page 3 and 4.

System boundaries (X=included, MND= module not declared, MNR=module not relevant)

Product stage		age	Assembly stage			Use stage				Eı	nd of l	ife stag	ge	Benefits & loads beyond system boundary		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4	D
X	X	X	X	X								X	X	X	X	X

Core environmental impact indicators

	sore environmental impact materials												
Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D				
GWP-total	kg CO2 eq.	2,29E+00	5,52E-02	3,14E-01	0.00E+00	2,62E-02	7,60E-01	1,24E-02	-1,47E+00				
GWP-fossil	kg CO2 eq.	2,26E+00	5,51E-02	3,12E-01	0.00E+00	2,62E-02	7,61E-01	1,24E-02	-1,46E+00				
GWP- biogenic	kg CO2 eq.	2,33E-02	3,35E-05	2,22E-03	0.00E+00	1,59E-05	-1,05E-03	1,08E-05	-4,70E-03				
GWP-LULUC	kg CO2 eq.	6,74E-03	1,95E-05	6,91E-04	0.00E+00	9,28E-06	1,47E-04	2,10E-07	-2,60E-04				
ODP	kg CFC11 eq.	8,65E-08	1,27E-08	1,25E-08	0.00E+00	6,04E-09	1,91E-08	3,10E-10	-7,28E-08				
AP	mol H⁺ eq.	8,79E-03	3,14E-04	1,01E-03	0.00E+00	1,49E-04	8,04E-04	7,39E-06	-3,89E-03				
EP- freshwater	kg P eq.	3,27E-05	4,54E-07	3,77E-06	0.00E+00	2,16E-07	4,24E-06	9,63E-09	-1,50E-05				

EP-marine	kg N eq.	1,73E-03	1,12E-04	2,14E-04	0.00E+00	5,34E-05	2,33E-04	4,81E-06	-6,94E-04
EP-terrestial	mol N eq.	1,94E-02	1,24E-03	2,39E-03	0.00E+00	5,89E-04	2,57E-03	3,00E-05	-7,69E-03
POCP	kg NMVOC eq.	7,90E-03	3,54E-04	9,27E-04	0.00E+00	1,68E-04	8,13E-04	1,13E-05	-3,52E-03
ADP-M&M	kg Sb eq.	3,54E-05	1,43E-06	4,08E-06	0.00E+00	6,78E-07	3,19E-06	7,44E-09	-8,90E-06
ADP-fossil	MJ	7,49E+01	8,47E-01	7,88E+00	0.00E+00	4,02E-01	2,55E+00	2,26E-02	-4,41E+01
WDP	m ³	1,76E+00	2,60E-03	1,81E-01	0.00E+00	1,23E-03	5,01E-02	1,13E-04	-7,35E-01

GWP-total: Global Warming Potential; GWP-fossil: Global Warming Potential fossil fuels; GWP-biogenic: Global Warming Potential biogenic; GWP-LULUC: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential, Accumulated Exceedance; EP-freshwater: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. EP-marine: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestial: Eutrophication potential, Accumulated Exceedance; POCP: Formation potential of tropospheric ozone; ADP-M&M: Abiotic depletion potential for non-fossil resources (minerals and metals); ADP-fossil: Abiotic depletion potential for fossil resources; WDP: Water deprivation potential, deprivation weighted water consumption

Additional environmental impact indicators

Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
PM	Disease incidence	8,79E-08	4,98E-09	1,09E-08	0.00E+00	2,37E-09	1,32E-08	1,55E-10	-3,21E-08
IRP	kBq U235 eq.	5,10E-02	3,70E-03	6,45E-03	0.00E+00	1,76E-03	7,69E-03	1,05E-04	-2,07E-02
ETP-fw	CTUe	1,49E+01	6,87E-01	1,89E+00	0.00E+00	3,27E-01	2,88E+00	1,89E-02	-5,31E+00
НТР-с	CTUh	6,67E-10	2,45E-11	1,05E-10	0.00E+00	1,16E-11	3,47E-10	5,52E-13	-2,35E-10
HTP-nc	CTUh	1,80E-08	8,19E-10	2,37E-09	0.00E+00	3,89E-10	4,29E-09	1,22E-11	-5,67E-09
SQP	Dimensionless	5,13E+00	7,24E-01	8,35E-01	0.00E+00	3,44E-01	2,04E+00	5,80E-02	-1,09E+00

PM: Particulate matter emissions; **IRP:** Ionising radiation, human health; **ETP-fw:** Ecotoxicity (freshwater); **ETP-c:** Human toxicity, cancer effects; **HTP-nc:** Human toxicity, non-cancer effects; **SQP:** Land use related impacts / soil quality

Classification of disclaimers to the declaration of core and additional environmental impact indicators

ILCD classification	Indicator	Disclaimer
ILCD type / level	Global warming potential (GWP)	None
	Depletion potential of the stratospheric ozone layer (ODP)	None
	Potential incidence of disease due to PM emissions (PM)	None
	Acidification potential, Accumulated Exceedance (AP)	None
	Eutrophication potential, Fraction of nutrients reaching freshwater end compartment (EP-freshwater)	None
ILCD type / level 2	Eutrophication potential, Fraction of nutrients reaching marine end compartment (EP-marine)	None
	Eutrophication potential, Accumulated Exceedance (EP-terrestrial)	None
	Formation potential of tropospheric ozone (POCP)	None

	Potential Human exposure efficiency relative to U235 (IRP)	1
	Abiotic depletion potential for non-fossil resources (ADP-minerals&metals)	2
	Abiotic depletion potential for fossil resources (ADP-fossil)	2
	Water (user) deprivation potential, deprivation-weighted water consumption (WDP)	2
ILCD type / level 3	Potential Comparative Toxic Unit for ecosystems (ETP-fw)	2
	Potential Comparative Toxic Unit for humans (HTP-c)	2
	Potential Comparative Toxic Unit for humans (HTP-nc)	2
	Potential Soil quality index (SQP)	2

Disclaimer 1 – This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. **Disclaimer 2** The results of this environmental impact indicator shall be used with care as the uncertainties on

Disclaimer 2 – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Resource use

Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
RPEE	MJ	4,52E+00	1,21E-02	4,67E-01	0.00E+00	5,77E-03	1,26E-01	8,76E-04	-5,32E-01
RPEM	MJ	0,00E+00	0,00E+00	0,00E+00	0.00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	4,52E+00	1,21E-02	4,67E-01	0.00E+00	5,77E-03	1,26E-01	8,76E-04	-5,32E-01
NRPE	MJ	8,04E+01	8,99E-01	8,45E+00	0.00E+00	4,27E-01	2,72E+00	2,40E-02	-4,76E+01
NRPM	MJ	0,00E+00	0,00E+00	0,00E+00	0.00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	8,04E+01	8,99E-01	8,45E+00	0.00E+00	4,27E-01	2,72E+00	2,40E-02	-4,76E+01
SM	kg	0,00E+00	0,00E+00	0,00E+00	0.00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0.00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0.00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m³	2,95E-02	9,58E-05	3,12E-03	0.00E+00	4,55E-05	1,47E-03	2,79E-05	-1,09E-02

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste

Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
HW	KG	1,72E-05	2,16E-06	2,47E-06	0.00E+00	1,03E-06	4,15E-06	2,72E-08	-1,27E-05
NHW	KG	2,69E-01	5,25E-02	5,74E-02	0.00E+00	2,49E-02	1,25E-01	9,97E-02	-3,34E-02
RW	KG	5,40E-05	5,76E-06	7,26E-06	0.00E+00	2,74E-06	9,74E-06	1,48E-07	-1,93E-05

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life – output flow

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
CR	kg	0,00E+00	0,00E+00	2,14E-09	0.00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00	7,39E-02	0.00E+00	0,00E+00	6,97E-01	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	1,99E-02	0.00E+00	0,00E+00	1,99E-01	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0.00E+00	0,00E+00	0,00E+00	0,00E+00	5,18E+00
ЕТЕ	MJ	0,00E+00	0,00E+00	0,00E+00	0.00E+00	0,00E+00	0,00E+00	0,00E+00	7,85E-01

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Information describing the biogenic carbon content at the factory gate

Biogenic carbon content	Unit	Value
Biogenic carbon content in product	kg C	0
Biogenic carbon content in the accompanying packaging	kg C	0

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess(A3).

National electricity grid	Unit	Value
Hydroelectricity, average (Ecoinvent 3.6)	kg CO2 -eq/kWh	0,0496

Additional environmental impact indicators required in NPCR Part A for construction products

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator for GWP has been sub-divided into the following:

GWP-IOBC Climate impacts calculated according to the principle of instantanious oxidation GWP-BC Climate impacts from the net uptake and emission of biogenic carbon from each module.

In addition, EP-freshwater shall also declared as PO4 eq.

Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWP-IOBC	kg CO2 eq.	2,26E+00	5,52E-02	3,12E-01	0,00E+00	2,62E-02	7,61E-01	1,23E-02	-1,46E+00
GWP-BC	kg CO2 eq.	2,33E-02	3,35E-05	2,22E-03	0,00E+00	1,59E-05	-1,05E-03	1,08E-05	-4,70E-03
GWP	kg CO2 eq.	2,29E+00	5,52E-02	3,14E-01	0,00E+00	2,62E-02	7,60E-01	1,24E-02	-1,47E+00

EP-freshwater* Eutrophication potential, fraction of nutrients reaching freshwater end compartment. Declared as PO4 eq. **GWP-IOBC** Global warming potential calculated according to the principle of instantanious oxidation. **GWP-BC** Global warming potential from net uptake and emissions of biogenic carbon from the materials in each module. **GWP** Global warming potential

Hazardous substances

The declaration is based upon reference to threshold values and/or test results and/or material safety data sheets provided to EPD verifiers. Documentation available upon request to EPD owner.

✓	The product contains no substances given by the REACH Candidate list or the
	Norwegian priority list.
	The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
	The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
	The product contains no substances given by the REACH Candidate list or the
	Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften
	Anney III) see table

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental

declarations - Principles and procedures

ISO 14044:2006 Environmental management - Life cycle assessment -

Requirements and guidelines

EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product

declaration - Core rules for the product category of construction

products

ISO 21930:2007 Sustainability in building construction – Environmental

declaration of building products

NPCR Part A Construction products and services. Ver. 2.0. March 2021, EPD-

Norge

CEWEP Results of Specific Data for Energy, R1 Plant Efficiency Factor and

NCV of 314 European Waste-to-Energy (WtE) Plants, CEWEP Energy Report III (status 2007-2010), 2012, Reiman, D.O.

	Program Operator	tlf	+47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation		
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Publisher	tlf	+47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation		
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Owner of the declaration	tlf	+4745190625
(wavin)	Norsk Wavin AS	Fax	
(Haviii)	Karihaugveien 89, 1086, Oslo	e-post:	Invoice.no@wavin.com
An Orbia business.	Norway	web	www.wavin.com/nn-no
	Author of the life cycle assessment	tlf	+31 (0)20 303 5777
	Lisa Overmars	Fax	
© Ecochain	H.J.E. Wenckebachweg 123, 1096 AM Amsterdam	e-post:	lovermars@ecochain.com
	The Netherlands	web	www.ecochain.com

EPD for the best environmental decision

