

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Flokk AS			
Program operator:	The Norwegian EPD Foundation			
Publisher:	The Norwegian EPD Foundation			
Declaration number:	NEPD-3715-2659-EN			
Registration number:	NEPD-3715-2659-EN			
ECO Platform reference number:	-			
Issue date:	09.09.2022			
Valid to:	09.09.2027			

OFFECCT Thelma, Room divider

Flokk AS

www.epd-norge.no

l:lol:l:

|**·**|o|:|:

General information

Product:

OFFECCT Thelma, Room divider

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-3715-2659-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR NPCR 026:2018 Part B for furniture

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 Pcs OFFECCT Thelma, Room divider

Declared unit with option:

A1,A2,A3,A4

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individual third party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii) the proccess is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Erik Svanes, Norsus AS

(no signature required)

Owner of the declaration:

Flokk AS

Contact person: Atle Thiis-Messel Phone: 0047 98 25 68 30 e-mail: atle.messel@flokk.com

Manufacturer:

Flokk AS Drammensveien 145, 0277 Oslo Norway

Place of production:

Flokk - Turek ul. Górnicza 8 62-700 Turek Poland

Management system:

ISO 14001, ISO 9001, ISO 50001(Norway, Sweden)

Organisation no:

No 928 902 749

Issue date: 09.09.2022

Valid to: 09.09.2027

Year of study:

2022

Comparability:

EPDs from programmes other than the Norwegian EPD Foundation may not be comparable

Development and verification of EPD:

The declaration has been developed and verified using EPD tool lca.tools ver EPD2020.11, developed by LCA.no AS. The EPD tool is integrated into the company's environmental management system, and has been approved by EPD-Norway

Developer of EPD:

Damian Bakowski

Reviewer of company-specific input data and EPD:

Arleta Derdziak

Approved:

Sign

Håkon Hauan, CEO EPD-Norge

Key environmental indicators	Unit	Cradle to gate A1 - A3
Global warming	kg CO2 eqv	95,96
Total energy use	MJ	1425,62
Amount of recycled materials	%	49,36

Product

Market:

Wordwide

Product description:

The sound absorber Thelma is named after Pauline Deltour's youngest daughter, a name that is said to mean 'divine protection'. "It has a stylized simplicity with fabrics that are wrapped around it and create a tailored and elegant expression. At the same time, I'm struck by the light-hearted playfulness that the sound absorber expresses; it feels self-conscious and urban, but at the same time relaxed and unforced", says Tobias Strålman, Design lead at Offecct.

Since our offices and ways of working have changed, towards increased flexibility and more but smaller spaces for physical and digital meetings. Thelma sound absorber are designed for use in such soft, adaptable work spaces – and also come with smart accessories such as a hook.

Product specification

Acoustic room divider upholstered in textile. Frame, wheel and hook in lacquered metal. Black and white as standard, Flexicolor as an option on request.

Recycled share in **Recycled share in** Materials kg % material (kg) material (%) Metal - Aluminium 1,65 5,36 1,65 100,00 Metal - Steel 10,41 33,91 1,95 18,72 Textile - Polyester (PE) 3.49 11.36 2.84 81,54 Rubber, synthetic 0,12 0,38 0,00 0,00 Powder coating 0.28 0.91 0.00 0.00 0,00 0,00 Plastic - Nylon (PA) 0,02 0,06 Textile - Felt 77,70 4,81 15,67 3,74 Glue 0,18 0,59 0,01 2,83 20,95 10,18 Total:

LCA: Calculation rules

Declared unit:

1 Pcs OFFECCT Thelma, Room divider

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Rubber, synthetic	ecoinvent 3.4	Database	2015
Metal - Steel	ecoinvent 3.3	Database	2016
Metal - Aluminium	ecoinvent 3.4	Database	2017
Metal - Steel	ecoinvent 3.4	Database	2017
Textile - Polyester (PE)	ecoinvent 3.4	Database	2017
Powder coating	ecoinvent 3.5	Database	2018
Plastic - Nylon (PA)	ecoinvent 3.6	Database	2019
Process	ecoinvent 3.6	Database	2019
Textile - Felt	ecoinvent 3.6	Database	2019
Textile - Polyester (PE)	ecoinvent 3.6	Database	2019
Glue	Modified ecoinvent 3.6	Database and supplier	2019

Technical data:

https://www.offecct.com/product/thelma-room-divider

Reference service life, product

5 years

Reference service life, building

|**·**|o|:|:

System boundary:

Additional technical information:

l:lol:l:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck	38,8 %	Truck, 16-32 tonnes, EURO 5	1000	0,044606	l/tkm	44,61
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

lice (R1)

Assembly	(A5)
Assembly	(23)

Assembly (A5)		Use (B1)			
• O	Unit	Value	•	Unit	Value
Auxiliary	kg				
Water consumption	m ³				Do.
Electricity consumption	kWh		1		
Other energy carriers	MJ]		
Material loss	kg]		
Output materials fr ste treatment	kg]		
Dust in the air	kg]		
VOC emissions	kg]		
Maintenance (B2)/Repair (B3)			Replacement (B4)/Refurbishment (B5)		

Maintenance (B2)/Repair (B3)

and and a selection (De)			replacement (D4)rectarbisiniterit (D4)			
	Unit	Value	•	Unit	Value	
Maintenance cycle*	UCC.		Replacement cycle*			
Auxiliary	Char.		Electricity consumption	kWh		
Other resources	4/10		Replacement of worn parts			
Water consumption	m ³	NG R	Replacement cycle* Electricity consumption Replacement of worn parts * Described above if relevant	1.00		
Electricity consumption	kWh	6	r a			
Other energy carriers	MJ		47.			
Material loss	kg		· AA			
VOC emissions	kg		- dr.			

Operational energy (B6) and water consumption (B7)

operational energy (bo) and water consum	priori (D/)		End of Ene (of, c		
•	Unit	Value	· · · · · ·	Unit	Value
Water consumption	m ³		Hazardous waste disposed	kg	
Electricity consumption	kWh		Collected as mixed construction was	kg	
Other energy carriers	MJ		Reuse	kg	
Power output of equipment	KW		Recycling		
			Energy recovery		
			To landfill	kg	

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck					l/tkm	
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage			instal	uction lation Ige		User stage						End of I	ife stage		Beyond the . system bondaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	W aste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1	A2	A3	A4
GWP	kg CO ₂ -eq	8,76E+01	2,27E+00	6,12E+00	3,36E+00
ODP	kg CFC11 -eq	5,52E-06	4,27E-07	1,58E-07	6,20E-07
РОСР	kg C ₂ H ₄ -eq	2,79E-02	3,68E-04	1,39E-03	5,48E-04
AP	kg SO ₂ -eq	3,65E-01	8,66E-03	3,68E-02	1,07E-02
EP	kg PO ₄ ³⁻ -eq	6,43E-02	1,56E-03	4,47E-03	1,78E-03
ADPM	kg Sb -eq	2,62E-03	4,60E-06	3,39E-07	1,02E-05
ADPE	MJ	1,01E+03	3,47E+01	6,23E+01	5,06E+01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

Unit	A1	A2	A3	A4
MJ	1,22E+02	6,42E-01	7,31E+00	7,38E-01
MJ	9,61E-01	0,00E+00	0,00E+00	0,00E+00
MJ	1,23E+02	6,42E-01	7,31E+00	7,38E-01
MJ	1,19E+03	3,58E+01	6,58E+01	5,18E+01
MJ	5,77E+01	0,00E+00	0,00E+00	0,00E+00
MJ	1,25E+03	3,58E+01	6,58E+01	5,18E+01
kg	1,02E+01	0,00E+00	0,00E+00	0,00E+00
MJ	2,87E-01	0,00E+00	0,00E+00	0,00E+00
MJ	3,04E-01	0,00E+00	0,00E+00	0,00E+00
m ³	9,39E-01	8,42E-03	3,28E-02	9,71E-03
	Unit MJ MJ MJ MJ MJ MJ kg MJ MJ MJ m ³	MJ 1,22E+02 MJ 9,61E-01 MJ 1,23E+02 MJ 1,19E+03 MJ 5,77E+01 MJ 1,25E+03 kg 1,02E+01 MJ 2,87E-01 MJ 3,04E-01	MJ 1,22E+02 6,42E-01 MJ 9,61E-01 0,00E+00 MJ 1,23E+02 6,42E-01 MJ 1,19E+03 3,58E+01 MJ 5,77E+01 0,00E+00 MJ 1,25E+03 3,58E+01 MJ 1,25E+03 3,58E+01 kg 1,02E+01 0,00E+00 MJ 2,87E-01 0,00E+00 MJ 3,04E-01 0,00E+00	MJ 1,22E+02 6,42E-01 7,31E+00 MJ 9,61E-01 0,00E+00 0,00E+00 MJ 1,23E+02 6,42E-01 7,31E+00 MJ 1,23E+02 6,42E-01 7,31E+00 MJ 1,19E+03 3,58E+01 6,58E+01 MJ 5,77E+01 0,00E+00 0,00E+00 MJ 1,25E+03 3,58E+01 6,58E+01 kg 1,02E+01 0,00E+00 0,00E+00 MJ 2,87E-01 0,00E+00 0,00E+00 MJ 3,04E-01 0,00E+00 0,00E+00

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier, NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; W Use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; W Use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1	A2	A3	A4	
HW	kg	1,32E-01	2,01E-05	3,14E-02	3,03E-05	
NHW	kg	5,93E+01	2,91E+00	2,28E+00	2,73E+00	
RW	kg	INA*	INA*	INA*	INA*	
HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed						

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

End of life - Output flow

Parameter	Unit	A1	A2	A3	A4	
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
MR	kg	2,92E-03	0,00E+00	7,67E-01	0,00E+00	
MER	kg	1,02E-01	0,00E+00	4,70E-03	0,00E+00	
EEE	MJ	INA*	INA*	INA*	INA*	
ETE	MJ	INA*	INA*	INA*	INA*	
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy						
Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed						

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Energy, electricity, Poland: 1 kWh	ecoinvent 3.6	1099,70	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Additional environmental information

Key environmental indicators for options for this EPD: Cradle to Gate analyse from A1 to A3

Option number	Global warming (kg CO2)	Total energy use (MJ)	Share of recycled material in product(%)	
OFFECCT Thelma, Hook	0,55	7,71	19,58	
OFFECCT Thelma, Packaging	11,07	142,96	96,99	

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

lversen et al., (2018) eEPD v3.0 - Background information for EPD generator system. LCA.no report number 04.18

Vold et al., (2019) EPD generator for Norsk Industri, Background information for industry application and LCA data, LCA.no report number 06.19.

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 026 Part B for Furniture. Ver. 2.0 October 2018, EPD-Norge.

C epd-norway	Program operator and publisher	Phone:	+47 23 08 80 00
	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
	Post Box 5250 Majorstuen, 0303 Oslo,Norway	web:	www.epd-norge.no
l: o : :	Owner of the declaration	Phone:	0047 98 25 68 30
	Flokk AS	e-mail:	atle.messel@flokk.com
	Drammensveien 145, 0277 Oslo	web:	https://www.flokk.com
LCA	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6B 1671 Kråkerøy	web:	www.lca.no
LCA	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 1C 1671 Kråkerøy	web:	www.lca.no