

Environmental product declaration

In accordance with 14025 and EN15804+A2

Isiflo Brass - Europe

The Norwegian EPD Foundation

Owner of the declaration: Isiflo AS

Product: Isiflo Brass - Europe

Declared unit: 1 kg

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR Part A: Construction products and services. Ver. 1.0. March 2021

EPD Software: LCA.no EPD generator **Program operator:** The Norwegian EPD Foundation

Declaration number:

NEPD-4056-3083-EN

- Registration number:
- NEPD-4056-3083-EN Issue date: 19.12.2022
- Valid to: 19.12.2027

System ID:

50801

General information

Product Isiflo Brass - Europe

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number: NEPD-4056-3083-EN

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR Part A: Construction products and services. Ver. 1.0. March 2021

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit: 1 kg Isiflo Brass - Europe Declared unit with option:

A1-A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

1 kg brass and packaging. Brass makes up more than 97 % of the weight in our brass couplings. The contents of rubber and composite material are therefore neglected in this general declaration.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individualthird party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii) the process is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Alexander Borg, Asplan Viak (no signature required)

Owner of the declaration:

lsiflo AS Contact person: Trond Brønstad Phone: +47 61 15 27 00 e-mail: Info@isiflo.com

Manufacturer: Isiflo AS

Place of production:

Isiflo AS Grøndalsveien 2 , 2830 Raufoss Norway

Management system:

ISO 9001:2015, ISO 14001:2015.

Organisation no:

982 236 177

Issue date: 19.12.2022

Valid to: 19.12.2027

Year of study:

2021

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD:

Jonas Dalby

Reviewer of company-specific input data and EPD:

Trond Brønstad

Approved:

akon Harry Håkon Hauan

Managing Director of EPD-Norway

Product

Product description:

Our Brass Couplings are traditional compression couplings which have been under constant development and improvements since 1965, both regarding material use and design. It is a well recognised mechanical coupling made in corrosion resistant material.

Isiflo Brass Fitting is a compression fitting made in dezincification resistant brass for use on plastic and metal pipes. It ensures a tight and end-load resistant connection and the fitting can be buried in ground.

The fitting is assembled from body, nut, clamp ring, composite pressure ring and O-ring.

For more information visit www.isiflo.com

Product specification

Material: Brass CW625N

Materials	kg	%
Metal - Brass	0,96	100,00
Total	0,96	
Packaging	kg	%
Packaging - Cardboard	0,01	34,02
Packaging - Pallet	0,02	62,68
Packaging - Plastic	0,00	3,30
Total incl. packaging	1,00	

Technical data:

Dimensions: 20-25-32-40-50-63mm

POTTABLE WATER / WATER

Temperature: 0°C to 40°C MOP: 16 bars Pipes: PE 40, PE 80, PE 100 according to EN 12201. PVC according to EN 1452 PEX pipes, if used with support liner. Thin-walled PE pipes SDR 17 PN6 collector pipes on a heat pump, if used with support liner.

LPG GAS OG HYDROGEN GAS:

Temperature: -20° to 40° MOP: 10 bars Pipe: PE 80, PE 100 in accordance with EN1555

PRODUCT APPROVALS:

Sintef Certification PS 0051 og PS 0052, RISE: 0318/01 GDV: 03/00036 KIWA: K6344 DVGW: NW-7511BM0414

For more information : www.isiflo.com

Market: Europe

Reference service life, product > 50 years

Reference service life, building or construction works >50 years

Declared unit:

1 kg Isiflo Brass - Europe

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

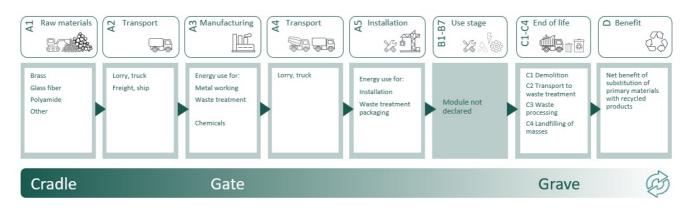
The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Metal - Brass	ecoinvent 3.6	Database	2019
Packaging - Cardboard	ecoinvent 3.6	Database	2019
Packaging - Pallet	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)


	Product	stage	Constr installati	uction on stage		Use stage				End of life stage				Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х

System boundary:

The analysis is a cradle-to-gate (A1 - A5) study.

It includes the extraction and production of raw materials, transportation to the production site, the production process itself and transport to the market. With end-of-life study (C1-C4) and Recycling potensial (D).

Environmental impacts in C1 are neglected due to manual work.

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	2000	0,043	l/tkm	86,00
Assembly (A5)	Unit	Value			
Waste, cardboard and paper, to average treatment - A5, inkl. transp. (kg)	kg	0,01			
Waste, plastic, mixture, to average treatment - A5, inkl. transp. (kg)	kg	0,00			
Waste, wood, average treatment - A5, inkl. transp. (kg)	kg	0,02			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	85	0,043	l/tkm	3,66
Waste processing (C3)	Unit	Value			
Brass, material to recycling (kg)	kg	0,86			
Disposal (C4)	Unit	Value			
Waste treatment per kg Brass, to landfill, residual material landfill (kg) - GLO	kg	0,10			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of primary Brass with net scrap (kg)	kg	0,55			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	nmental impact									
	Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
P	GWP-total	kg CO ₂ -eq	7,81E+00	3,27E-01	9,89E-04	0	1,39E-02	0,00E+00	7,88E-04	-2,40E+00
P	GWP-fossil	kg CO ₂ -eq	7,65E+00	3,27E-01	9,85E-04	0	1,39E-02	0,00E+00	7,87E-04	-2,39E+00
P	GWP-biogenic	kg CO ₂ -eq	1,42E-01	1,35E-04	3,45E-06	0	5,75E-06	0,00E+00	9,06E-07	-1,33E-02
P	GWP-luluc	kg CO ₂ -eq	1,05E-02	1,16E-04	2,50E-07	0	4,94E-06	0,00E+00	2,61E-07	-3,81E-03
Ò	ODP	kg CFC11 -eq	6,66E-07	7,40E-08	1,58E-10	0	3,15E-09	0,00E+00	3,48E-10	-1,52E-07
Ê	AP	mol H+ -eq	4,26E-01	9,39E-04	6,50E-06	0	3,99E-05	0,00E+00	6,99E-06	-2,21E-01
	EP-FreshWater	kg P -eq	3,48E-03	2,61E-06	9,96E-09	0	1,11E-07	0,00E+00	1,18E-08	-1,78E-03
-	EP-Marine	kg N -eq	2,34E-02	1,86E-04	2,75E-06	0	7,90E-06	0,00E+00	2,10E-06	-1,11E-02
-	EP-Terrestial	mol N -eq	3,33E-01	2,08E-03	2,87E-05	0	8,83E-05	0,00E+00	2,33E-05	-1,64E-01
	РОСР	kg NMVOC -eq	8,97E-02	7,96E-04	7,52E-06	0	3,38E-05	0,00E+00	7,06E-06	-4,34E-02
**	ADP-minerals&metals ¹	kg Sb -eq	2,50E-02	9,02E-06	1,66E-08	0	3,84E-07	0,00E+00	8,57E-09	-1,42E-02
A	ADP-fossil ¹	MJ	9,83E+01	4,94E+00	1,13E-02	0	2,10E-01	0,00E+00	2,46E-02	-2,74E+01
%	WDP ¹	m ³	3,77E+02	4,78E+00	1,74E-02	0	2,03E-01	0,00E+00	8,39E-03	-1,94E+01

GWP total Global Warming Potential total; GWL fossil Global Warming Potential fossil fuels ; GWP biogenic Global Warming Potential biogenic; GWP luluc Global W Potential land use change; ODP Ozone Depletion; AP Acidification; EP freshwater Eutrophication aquatic freshwater; EP marine Eutrophication aquatic marine; EP terrestrial Eutrophication terrestrial ;POCP Photochemical zone formation; ADPE Abiotic Depletion Potential minerals and metals; ADPf Abiotic Depletion Potential fossil fuels;

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Addition	Additional environmental impact indicators									
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	PM	Disease incidence	1,05E-06	2,00E-08	8,20E-11	0	8,50E-10	0,00E+00	1,16E-10	-4,84E-07
(ini) B	IRP ²	kgBq U235 -eq	4,59E-01	2,16E-02	4,32E-05	0	9,18E-04	0,00E+00	9,76E-05	-1,14E-01
	ETP-fw ¹	CTUe	4,06E+03	3,66E+00	1,33E-02	0	1,56E-01	0,00E+00	7,85E-01	-2,14E+03
40.* ****	HTP-c ¹	CTUh	6,70E-08	0,00E+00	1,00E-12	0	0,00E+00	0,00E+00	2,23E-09	-3,23E-08
₩ 20 20 20	HTP-nc ¹	CTUh	4,88E-06	4,00E-09	5,20E-11	0	1,70E-10	0,00E+00	1,53E-07	-2,57E-06
	SQP ¹	dimensionless	7,74E+01	3,46E+00	7,16E-03	0	1,47E-01	0,00E+00	9,19E-02	-2,59E+01

PM Particulate Matter emissions; IRP Ionizing radiation – human health; ETP-fw Eco toxicity – freshwater; HTP-c Human toxicity – cancer effects; HTP-nc Human toxicity – non cancer effects; SQP Soil Quality (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use	Resource use									
	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
i ji	PERE	MJ	2,07E+01	7,07E-02	2,21E-04	0	3,01E-03	0,00E+00	2,27E-04	-7,09E+00
A.	PERM	MJ	5,56E-01	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
аř.	PERT	MJ	2,13E+01	7,07E-02	2,21E-04	0	3,01E-03	0,00E+00	2,27E-04	-7,09E+00
B	PENRE	MJ	9,84E+01	4,94E+00	1,13E-02	0	2,10E-01	0,00E+00	2,46E-02	-2,74E+01
.Åa	PENRM	MJ	5,52E-02	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
IA	PENRT	MJ	9,84E+01	4,94E+00	1,13E-02	0	2,10E-01	0,00E+00	2,46E-02	-2,74E+01
	SM	kg	5,29E-01	0,00E+00	7,24E-06	0	0,00E+00	0,00E+00	5,93E-06	-1,79E-01
P	RSF	MJ	4,02E-01	2,53E-03	6,62E-06	0	1,08E-04	0,00E+00	1,61E-05	-5,26E-02
Ū.	NRSF	MJ	4,74E-01	9,04E-03	6,09E-05	0	3,84E-04	0,00E+00	1,94E-05	-2,67E-02
96	FW	m ³	1,44E-01	5,28E-04	7,35E-06	0	2,25E-05	0,00E+00	2,85E-05	-5,53E-02

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM Use of renewable primary energy resources used as raw materials; PERT Total use of renewable primary energy resources; PENRE Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERT Total use of non renewable primary energy resources used as raw materials; PENRT Total use of non renewable primary energy resources used as raw materials; PENRT Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; FW Use of net fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Wa	ste									
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	HWD	kg	8,37E-02	2,55E-04	2,69E-04	0	1,08E-05	0,00E+00	2,55E-06	-2,34E-02
Ū	NHWD	kg	2,45E+00	2,40E-01	1,21E-03	0	1,02E-02	0,00E+00	9,62E-02	-8, 18E-01
ß	RWD	kg	4,26E-04	3,36E-05	6,55E-08	0	1,43E-06	0,00E+00	1,56E-07	-9,39E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed;

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Outpu	ıt flow									
Indica	tor	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
$\otimes $	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
\$	MFR	kg	2,55E-01	0,00E+00	1,31E-02	0	0,00E+00	8,65E-01	5,29E-06	-2,42E-02
DØ	MER	kg	8,47E-03	0,00E+00	7,28E-08	0	0,00E+00	0,00E+00	1,63E-07	-2,91E-03
5D	EEE	MJ	1,29E-01	0,00E+00	1,80E-02	0	0,00E+00	0,00E+00	5,02E-07	-1,83E-02
DŪ	EET	MJ	1,95E+00	0,00E+00	2,72E-01	0	0,00E+00	0,00E+00	7,60E-06	-2,78E-01

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported energy Thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content							
Indicator	Unit	At the factory gate					
Biogenic carbon content in product	kg C	0,00E+00					
Biogenic carbon content in accompanying packaging	kg C	1,64E-02					

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Norway (kWh)	ecoinvent 3.6	24,33	g CO2-eq/kWh

Dangerous substances

The product contains dangerous substances, more than 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.

Name	CASNo	Amount
Lead	7439-92-1	CW625N contains approximately 1.5% lead

Indoor environment

Not relevant.

Additional Environmental Information

Environmental impact indicators EN 15804+A1 and NPCR Part A v2.0											
Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D		
GWP	kg CO ₂ -eq	7,58E+00	3,24E-01	9,57E-04	0	1,37E-02	0,00E+00	7,60E-04	-2,33E+00		
ODP	kg CFC11 -eq	6,21E-07	6,00E-08	1,29E-10	0	2,55E-09	0,00E+00	2,77E-10	-1,40E-07		
POCP	kg C ₂ H ₄ -eq	1,44E-02	3,95E-05	1,85E-07	0	1,68E-06	0,00E+00	3,23E-07	-7,29E-03		
AP	kg SO ₂ -eq	3,60E-01	6,45E-04	3,98E-06	0	2,74E-05	0,00E+00	3,54E-06	-1,87E-01		
EP	kg PO ₄ ³⁻ -eq	1,93E-02	6,87E-05	1,13E-06	0	2,92E-06	0,00E+00	4,13E-07	-9,49E-03		
ADPM	kg Sb -eq	2,50E-02	9,02E-06	1,66E-08	0	3,84E-07	0,00E+00	8,57E-09	-1,42E-02		
ADPE	MJ	8,22E+01	4,84E+00	1,10E-02	0	2,06E-01	0,00E+00	2,43E-02	-2,39E+01		
GWPIOBC	kg CO ₂ -eq	7,78E+00	3,27E-01	0,00E+00	0	1,39E-02	0,00E+00	7,88E-04	-2,40E+00		

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources; GWP-IOBC/GHG Global warming potential calculated according to the principle of instantanious oxidation (except emissions and uptake of biogenic carbon)

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21

Author(s)., (2022) EPD generator for EPD generator for NPCR 013

Part B for Steel and Aluminum, Background information for EPD generator application and LCA data, LCA no report number: 08.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge. NPCR 013 Part B for Steel and Aluminium Construction Products, Ver. 4.0, 06.10.2021, EPD Norway.

www.isiflo.com - Product description and technical data.

Global Program Operator	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway	e-mail:	+47 23 08 80 00 post@epd-norge.no www.epd-norge.no
🕶 isiflo	Owner of the declaration: Isiflo AS Grøndalsveien 2, 2830 Raufoss	e-mail:	+47 61 15 27 00 Info@isiflo.com https://isiflo.no/
LCA	Author of the Life Cycle Assessment LCA.no AS Dokka 6B, 1671	e-mail:	+47 916 50 916 post@lca.no www.lca.no
LCAno	Developer of EPD generator LCA.no AS Dokka 6B,1671 Kråkerøy	e-mail:	+47 916 50 916 post@lca.no www.lca.no
	ECO Platform ECO Portal		www.eco-platform.org ECO Portal