© epd-norway

Global Program Operato

ENVIRONMENTAL PRODUCT DECLARATION

This EPD is in accordance with ISO 14025 and EN 15804.
Owner of the declaration:
Program operator:
Publisher:
Declaration number: Issue date:
Valid to:

Beer Sten AS
The Norwegian EPD Foundation The Norwegian EPD Foundation NEPD-4059-3090-EN
19.12.2022
19.12.2027

BeerEcoSten® Porto - The Star Selection
BeerEcoSten® Star White
BeerEcoSten ${ }^{8}$ Star Blue
BeerEcoSten® Roriz

Beer Sten AS

www.epd-norge.no

BEER STEN AS
Etabl $\star 1879$
Et trygt valg

General information

Product
BeerEcoSten® Star White
BeerEcoSten $®$ Star Blue
BeerEcoSten® Roriz

Program holder

Næringslivets Stiftelse for Miliødeklarasjoner
Postboks 5250 Majorstuen, 0303 Oslo
Phone: +4797722020
e-mail: post@epd-norge.no

Declaration number

NEPD-4059-3090-EN
This declaration is based on Product Category Rules:
EN 15804:2012+A1:2013 v.1.0 (24.11.2013).
NPCR Part A v.1.0 for Construction products and services (07.04.2017).
NPCR 018 v.1.0 Part B for natural stone products, aggregates and fillers (20.05.2020)

Statements:

The owner of the declaration shall be liable for the underlying information and evidence.
EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit:

Declared unit with option:

Functional unit

1 tonne of BeerEcoSten® installed in roads/pavements/parking lots/city squares/driveways/gardens/parks etc.

Verification:

| Independent verification of the declaration and data, according to
 ISO14025:2010
 $\square \quad$ internal |
| :--- | :--- |

Tie VoId - LCA.no AS
(Independent verifier approved by EPD Norway)

Owner of the declaration
Contact person: Monica Midtun Sander
Phone:
e-mail: monica@beersten.no
Address: Habornveien 56 1630 Game Fredrikstad
Manufacturer
The average of three manufacturers were declared, here named as
Portugal 1
Portugal 2
Portugal 3
Can be provided upon request

Place of production:

Portugal

Management system:

Organisation no:
952440330

Issue date
19.12.2022

Valid to
19.12.2027

Year of study:
2021

Comparability:

EPD of construction products may not be comparable if they do not comply with EN15804 and are seen in a building context. EPDs from other programmes than EPD-Norway may not be comparable.

The EPD has been worked out by:
Simon A. Saxegård

NORSUS

Approved

Håkon Hazan
Managing Director of EPD-Norway

Product

Product description:

BeerEcoSten $®$ Porto is a product group of stone products with different colors of natural stone. The product group includes paving, wallstones, elements and curbs in an infinite variety of sizes. During installation it is only curb stones that requires adhesive concrete. A specific installation scenario (A5) is described for curb stones because these require additional B30 concrete.

Technical data:

Density of product: $2.6 \mathrm{t} / \mathrm{m}^{3}$
Product specifications are tested in accordance to standards:
EN 1341:2012
EN 1342:2012
EN 1343:2012

Product specification
Product specification

Declared stone types	Water absorption						
Bending tensile strength		Compressive strength	Mineral composition				
BeerEcoSten® Roriz	0,20	$\%$	17,2	MPa	157	MPa	Feldspar, plagioclase, quartz, biotite, muscovite
BeerEcoSten® Star Blue	0,30	$\%$	17,7	MPa	164	MPa	Microcline, plagioclase, quartz, mica
BeerEcoSten® Star White	0,30	$\%$	14,6	MPa	170	MPa	Microcline, plagioclase, quartz, biotite, muscovite

Use and application:

- Elements and wallstones
- Curb stone
- Pavers
- Setts and cubes
- Steps

All products are licenced for road use according to strength and property parameters.

Market: Norway
Reference service life:
>60 years.

Average data:

This EPD declares natural stone products, from three types of materials, in various shapes, sizes and surfaces. The manufacturing data collected represent an average of all variations. A test was performed to investigate variations in the amount of saw dust from variations in saw blade thicknesses for cutting. It was found less than 10% variations in amounts of saw dust for the smallest stones cut ($10 \times 10 \times 10$) across the range of saw blade thicknesses. Similarly, flaming contributed with less than 10% variation for all stone sizes. Data were normalised per tonne stone product sold from manufacturer. Cut wastages, flaming, administrative consumables, and waste management are averaged accordingly.

LCA: Calculation rules

Functional unit

1 tonne of BeerEcoSten® Porto installed in roads/pavements/parking lots/city squares/driveways/gardens/parks etc.

System boundary:

The system boundary include the whole life cycle of BeerEcoSten $®$ Porto from Portugal installed, used, and handled after end-of-useful-life in Norway.

Figure 1: System boundary

Data quality:

Data quality: Good quality. Data based on information directly from manufacturer and Beer Sten AS. Transport based on information from distribution actors.
Database data based on Ecoinvent 3.8, where no data are more than 10 years old.
LCA software: SimaPro 9.4.0.2
Year of average data from manufacturer: 2019.

Cut-off criteria:

All major raw materials and all the essential energy flows are included. The production processes for raw materials and energy flows that are included with very small amounts ($<1 \%$) are not included. This cut-off rule does not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of ISO 14025 and the definitions in EN 15804+A1 and NPCR 018 Part B. The manufactured natural stones make up 100% of the revenue for two of the three factories in Portugal. For Portugal 2 the revenue of the co-product stone flour was 1.2%. Mass allocation was used between the three factories according to the weighted production: 16.2% Portugal $1,80.5 \%$ Portugal 2 , and 3.3% Portugal 3 . The net allocation between the co-product stone flour (from Portugal 2) and the total amount of natural stones provided from Portugal will thus be far less than 1% and is accordingly negligible. However, we here chose to include an economic allocation for the Portugal 2 inventories with 98.8% of the activity to the declared functional unit as the data were readily available.

LCA: Scenarios and additional technical information

The following information describes the scenarios in the different modules of the EPD.
Transport from production place to assembly/user (A4)

Type	Capacity utilisation (incl. return) \%	Type of vehicle	Distance km	Fuel/Energy consumption	Value (l/t)	
Truck	55%	>32 EURO 4	45	0,022106	$1 /$ /km	1,0
Boat	60%	10802 DWT container ship	1342	0,0040	$1 /$ /km	5,4
Boat	60%	13000 DWT container ship	1342	0,0054	$1 /$ /km	7,3
Truck	55%	>32 EURO 6 B7 fuel	90	0,022106	$1 /$ /km	2,0

Stones are transported from the factories in Portugal to Lexioes harbour (45 km) before being shipped to Fredrikstad with a transhipment in Rotterdam. Sea vessel sizes have been adjusted according to information from EPD owner. Fuel consumption is based on Smith et al. (2014)

Assembly (A4) Intermediate storage

	Unit	Value
Beer Sten AS' sales and storage operation	t	1

Activities at Beer Sten AS are included as storage acitivity during the transport phase A4. Impacts associated with the storage are yearly activities and direct emissions divided by the annual sales of all natural stones.
Assembly (A5)

	Unit	Value
Excavator in operation	$\mathrm{min} / \mathrm{t}$	2

Assembly (A5b) Curbe stone installment with concrete

	Unit	Value
Excavator in operation	$\mathrm{min} / \mathrm{t}$	2
Concrete B30 (NEPD-2327-1071-NO)	$\mathrm{m} 3 / \mathrm{t}$	0,0007

Use phase (B1-B7)

No activity necessary to achieve the function of the declared unit. Natural stones are products which need no maintenance, washing or other activities to fulfill their intended use throughout their reference service life.

End of Life (C1, C3, C4)

Natural stone products can be reused. No national statistics on the life cycle scenario of natural stones are available, so a conservative approach was selected in accordance with NPCR 018. The end-of-life treatments typical for natural stone products are either direct reuse (80%), i.e., reuse as raw material to new stone produce, or reuse as raw material to gravel/sand production (10\%) or as inert landfill (10\%).

C1 Demolition

	Unit	Value
Excavator in operation	$\mathrm{min} / \mathrm{t}$	10

The demolition phase is assumed to be mainly performed by hand, but with aid of machinery, like an excavator, in the process.
Transport to waste processing (C2)
Transport to waste processing (C2)

Type	Capacity utilisation (incl. return) \%	Type of vehicle	Distance km	Fuel/Energy consumption	Value (l/t)
Truck	36%	$16-32 \mathrm{t}$ EURO 5	50	0,043287	I / km

C3 Waste treatment

C3 Waste treatment

	Unit	Value
Rock crushing, for landfill	t	0,1
Rock crushing, as recycling	t	0,1
Sorting for reuse (no activity)	t	0,8

Benefits and loads beyond the system boundaries (D)

Uenefits and loads beyond the system boundaries (D)	Unit	Value
Natural stone, reused at site or nearby	t	0,8
Crushed stone, recycled to road constructions etc.	t	0,1

Natural stone products can in most cases be reused directly for refurbishment or new installments. Beer Sten describes that about 10% will be landfilled/long time stored (>3 years) as inert gravel, leaving 90% to be reused either as natural stones (80%) or downcycled to gravel (10%). Crushing to gravel is included as the waste management process.

Additional technical information

The stones will maintain the same technical properties as described for the declared functional unit when reused or recycled.

LCA: Results

The results present the environmental and resource impacts, as well as delivered outputs, connected to the declared unit as described in EN $15804+\mathrm{A} 1$

System boundaries ($\mathrm{X}=$ included, $\mathrm{MND}=$ module not declared, $\mathrm{MNR}=$ module not relevant)

Product stage			Assembly stage		Use stage							End of life stage				Beyond the system boundaries
			$\begin{aligned} & \text { to } \\ & \text { O} \\ & \text { N} \\ & \stackrel{N}{0} \end{aligned}$		$\stackrel{\otimes}{\rho}$										$\begin{aligned} & \overline{0} \\ & \text { O} \\ & \text { O} \\ & \ddot{\#} \end{aligned}$	
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Environmental impact

Parameter	Unit	A1-A3	A4	A5a	A5b	B1-B7	C1	C2	C3	C4	D
GWP	kg CO2-eqv	61,77	3,7E+01	2,2E+00	2,2E+00	0,0E+00	1,1E+01	8,2E+00	5,9E-03	6,7E-01	-9,6E+01
ODP	kg CFC11-eqv	8,3E-06	6,1E-06	3,9E-07	3,9E-07	0,0E+00	2,0E-06	1,5E-06	2,9E-10	2,1E-07	-1,6E-05
POCP	kg C2H4-eqv	1,3E-02	1,6E-02	3,3E-04	5,3E-04	0,0E+00	1,7E-03	1,1E-03	1,9E-06	1,5E-04	-1,7E-02
AP	kg SO2 -eqv	4,6E-01	4,5E-01	7,6E-03	7,7E-03	0,0E+00	3,8E-02	2,6E-02	2,1E-05	4,9E-03	-6,6E-01
EP	kg PO43--eqv	1,1E-01	6,7E-02	1,7E-03	1,7E-03	0,0E+00	8,4E-03	5,8E-03	9,8E-06	1,1E-03	-1,8E-01
ADPM	kg Sb-eqv	3,2E-04	1,1E-04	2,5E-06	2,5E-06	0,0E+00	1,2E-05	2,9E-05	1,2E-07	9,8E-07	-3,6E-04
ADPE	MJ	831,38	5,3E+02	3,3E+01	3,3E+01	0,0E+00	1,6E+02	1,3E+02	5,6E-02	1,8E+01	-1,3E+03

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource use											
Parameter	Unit	A1-A3	A4	A5a	A5b	B1-B7	C1	C2	C3	C4	D
RPEE	MJ	120,50	1,4E+01	2,6E-01	2,6E-01	0,0E+00	1,3E+00	1,8E+00	5,6E-01	3,8E-01	-1,3E+03
RPEM	MJ	0,00	0,0E+00								
TPE	MJ	120,50	1,4E+01	2,6E-01	2,6E-01	0,0E+00	1,3E+00	1,8E+00	5,6E-01	3,8E-01	-1,3E+03
NRPE	MJ	832,43	5,2E+02	3,2E+01	3,2E+01	0,0E+00	1,6E+02	1,3E+02	9,0E-02	1,7E+01	-2,6E+03
NRPM	MJ	0,00	0,0E+00								
TRPE	MJ	832,43	5,2E+02	3,2E+01	3,2E+01	0,0E+00	1,6E+02	1,3E+02	9,0E-02	1,7E+01	-2,6E+03
SM	kg	0,0E+00	0,0E+00	0,0E+00	1,2E-02	0,0E+00	0,0E+00	0,0E+00	0,0E+00	0,0E+00	0,0E+00
RSF	kg	0,0E+00	-1,2E-04								
NRSF	kg	0,0E+00	0,0E+00	0,0E+00	4,3E-02	0,0E+00	0,0E+00	0,0E+00	0,0E+00	0,0E+00	0,0E+00
W	kg	8,3E+02	5,2E+02	3,2E+01	3,2E+01	0,0E+00	1,6E+02	1,3E+02	9,0E-02	1,7E+01	-2,6E+03

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water
End of life - Waste

Parameter	Unit	A1-A3	A4	A5a	A5b	B1-B7	C1	C2	C3	C4
HW	kg	$2,1 \mathrm{E}-03$	$8,7 \mathrm{E}-04$	$8,6 \mathrm{E}-05$	$8,6 \mathrm{E}-05$	$0,0 \mathrm{E}+00$	$4,3 \mathrm{E}-04$	$3,3 \mathrm{E}-04$	$2,5 \mathrm{E}-07$	$2,5 \mathrm{E}-05$
NHW	kg	$2,8 \mathrm{E}+01$	$2,9 \mathrm{E}+01$	$4,6 \mathrm{E}-01$	$4,6 \mathrm{E}-01$	$0,0 \mathrm{E}+00$	$2,3 \mathrm{E}+00$	$7,3 \mathrm{E}+00$	$8,2 \mathrm{E}-03$	$2,0 \mathrm{E}+02$
RW	kg	$4,1 \mathrm{E}-03$	$3,4 \mathrm{E}-03$	$2,1 \mathrm{E}-04$	$2,1 \mathrm{E}-04$	$0,0 \mathrm{E}+00$	$1,1 \mathrm{E}-03$	$8,5 \mathrm{E}-04$	$6,6 \mathrm{E}-07$	$1,2 \mathrm{E}-04$

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow											
Parameter	Unit	A1-A3	A4	A5a	A5b	B1-B7	C1	C2	C3	C4	D
CR	kg	0,0E+00	8,0E-01	0,0E+00	0,0E+00						
MR	kg	7,0E-03	0,0E+00	1,4E-06	1,4E-06	0,0E+00	0,0E+00	0,0E+00	1,0E-01	0,0E+00	0,0E+00
MER	kg	2,2E-02	8,7E-01	0,0E+00							
EEE	MJ	1,7E-02	1,2E+00	0,0E+00							
ETE	MJ	3,6E-02	2,5E+00	0,0E+00							

[^0]Reading example: $9,0 \mathrm{E}-03=9,0 * 10-3=0,009$

Figure 1: Relative impact contribution across all life cycle stages A1-C4

The relative contribution assessment shows that the product stages A1-A3 are the major source of impacts across impact categories. Thereafter follows A4 which contains both the distribution and regional storage and operations at Beer Sten AS.

Figure 2: Relative impact contribution during the production phases $\mathrm{A} 1-\mathrm{A} 3$.

Within the aggregated module A1-A3, A3 Manufacturing is the greatest contributor for all the assessed environmental impacts. A1 Raw material extraction is the second largest contributor, and for every category except ADPM it contributes about 40% of A1-A3 impacts. Transport to manufacturing is negligible.

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase
National production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess(A3).

Data source	Amount	Unit
Ecoinvent v3.8 Electricity, medium voltage $\{P T\} \mid$ market for \mid Cut-off, U	394	$\mathrm{~g} \mathrm{CO}-\mathrm{eqv} / \mathrm{kWh}$

Dangerous substances

(The product contains no substances given by the REACH Candidate list or the Norwegian priority list

- The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than $0,1 \%$ by weight.The product contain dangerous substances, more then $0,1 \%$ by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Name	CAS no.	Amount

Indoor environment

The product meets the requirements for low emissions.
No tests have been carried out on the product concerning indoor climate because the usage is intended for outdoor applications and installation.

Carbon footprint

Calculations connected to climate change and global warming potential (GWP) includes greenhouse gas emissions from fossil sources and land use change connected to extraction of natural stones, but does not include calculations of biogenic emissions of CO_{2}.

Bibliography

ISO 14025:2010
Environmental labels and declarations - Type III environmental declarations - Principles and procedures

ISO 14044:2006

Ecoinvent v.3.8
EN 1341:2012
EN 1342:2012

EN 1343:2012
EN 15804:2012+A1:2013 v.1.0

ISO 21930:2007
NEPD-2327-1071-NO

NPCR Part A v.1.0

NPCR 018 v.1.0
Smith et al. 2014

Saxegård 2021

Environmental management - Life cycle assessment - Requirements and guidelines
Swiss Centre of Life Cycle Inventories. www.ecoinvent.ch
Slabs of natural stone for external paving - Requirements and test methods
Cubes and setts of natural stone for external paving - Requirements and test methods
Kerbs of natural stone for external paving - Requirements and test methods
Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products (24.11.2013).

Sustainability in building construction - Environmental declaration of building products
NEPD-2327-1071-NO, 1002 B30 M60 22mm
Part A for Construction products and services (07.04.2017),

Part B for Crushed Stones and Stone Products (20.05.2020)
Third IMO GHG Study 2014; International Maritime Organization
IMO) London, UK, April 2015; Smith, T. W. P.; Jalkanen, J. P.; Anderson, B. A.; Corbett, J. J.; Faber, J.; Hanayama

Saxegård, S. A. (2021) EPD BeerEcoSten® LCA report. OR 31.21

| BEER STEN AS |
| :--- | :--- | :--- |
| Etab $\star 1879$ |
| Et trygt valg |

ENVIRONMENTAL PRODUCT DECLARATION

This EPD is in accordance with ISO 14025 and EN 15804. Owner of the declaration:
Program operator:
Publisher:
Declaration number: Issue date: Valid to:

Beer Sten AS
Næringslivets Stiftelse for Miljødeklarasjoner
The Norwegian EPD Foundation
NEPD-4059-3090-EN -A4 updated 2023
19.12.2022
19.12.2027

BeerEcoSten® Porto - The Star Selection, A4 note transport laps
BeerEcoSten $®$ Star White

BEER STEN AS
Etabl $\star 1879$
Et trygt valg

General information

Product

BeerEcoSten® Star White
BeerEcoSten $®$ Star Blue
BeerEcoSten® Roriz

Program holder

Næringslivets Stiftelse for Miliødeklarasjoner
Postboks 5250 Majorstuen, 0303 Oslo
Phone: $\quad+4797722020$
e-mail: post@epd-norge.no

Declaration number

NEPD-4059-3090-EN - A4 updated 2023

This declaration is based on Product Category Rules:
EN 15804:2012+A1:2013 v.1.0 (24.11.2013)
NPCR Part A v.1.0 for Construction products and services (07.04.2017)
NPCR 018 v.1.0 Part B for natural stone products, aggregates and fillers (20.05.2020)

Statements:

The owner of the declaration shall be liable for the underlying information and evidence.
EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit:

1 tonne of BeerEcoSten $®$ transported from manufacturing in Portugal to installation in Oslo.

Declared unit with option:

Functional unit:

Verification:

Independent verification of the declaration and data, according to ISO14025:2010
$\square \quad$ internal
Third party verifier:
sign
$<$ reTitle Name>
:---:
(Independent verifier approved by EPD Norway)

Owner of the declaration

EPD owner	Beer Sten AS
Contact person:	Monica Midtun Sander
Phone:	+4741552474
e-mail:	monica@beersten.no
Address:	Habornveien 56 Manufacturer

Manufacturer
The average distance from three manufacturers were declared, here named as:
Portugal 1
Portugal 2
Portugal 3
Can be provided upon request.
Place of production:
Portugal

Management system:

Organisation no:

952440330

Issue date
19.12.2022

Valid to
19.12.2027

Year of study:
2021

Comparability

EPD of construction products may not be comparable if they do not comply with EN15804 and are seen in a building context. EPDs from other programs than EPD-Norway may not be comparable.

The EPD has been worked out by:

Simon A. Saxegård

Approved

Håkon Hazan
Managing Director of EPD-Norway

Product

Product description:

Not relevant information for this A4 note. See the reference EPD NEPD-40593090 that this A4 note is valid for.

Product specification

Not relevant information for this A4 note. See the reference EPD NEPD-4059-3090 that this A4 note is valid for.

Use and application:

Not relevant information for this A4 note. See the reference EPD NEPD-4059-3090 that this A4 note is valid for.

LCA: Calculation rules

Declared Unit

1 tonne of BeerEcoSten® transported from manufacturing in Portugal to installation in Oslo.

Technical data:

Not relevant information for this A4 note. See the reference EPD NEPD-4059-3090 that this A4 note is valid for.

Market: Norway

Reference service life:

Not relevant information for this A4 note. See the reference EPD NEPD-4059-3090 that this A4 note is valid for.

Figure 1: System boundary

System boundary

The system boundary includes the transport laps Aa (Transport to harbor in Portugal), A4b (sea freight from Portugal to Fredrikstad harbor), A4c Transport form harbor to Central storage in Fredrikstad), A4d (Central storage in Fredrikstad and A4e (Transport from Fredrikstad to installation in Oslo. The shaded areas include the system boundary in the original EPD, NEPD-4059-3090.

Portugal

Data quality:
Data quality: Good quality. Data based on information directly from manufacturer and Beer Sten AS. Transport based on information from distribution actors.
Database data based on Ecoinvent 3.9, where no data are more than 10 years old LCA software: SimaPro 9.5.0.0.
Year of average data from manufacturer: 2019.

Cut-off criteria:

All major raw materials and all the essential energy flows are included. The production processes for raw materials and energy flows that are included with very small amounts ($<1 \%$) are not included. This cut-off rule does not apply for hazardous materials and substances.

Changes in net A4 results

The total transport $A 4=A 4 a+A 4 b+A 4 c+A 4 d+A 4 e$. The sum environmental impact for the road transports have increased by approximately $+11 \% C O 2-e q . / t k m$ due to a change in background data from ecoinvent database from 3.8 to 3.9.

Allocation:

Mass allocation was used between the three factories according to the weighted production: 16.2\% Portugal 1, 80.5\% Portugal 2, and 3.3\% Portugal 3 .

LCA: Scenarios and additional technical information

The following information describes the scenarios in the different modules of the EPD.
Transport from production place to assembly/user (A4)

Type	Capacity utilisation (incl. return) \%	Type of vehicle	Distance km	Fuel/Energy consumption (I/tkm)	Value (I/t)
Truck	55%	>32 EURO 4	45	0,0221	1,0
Boat	60%	10802 DWT container ship	1342	0,0040	
Boat	60%	13000 DWT container ship	1342	0,0054	
Truck	55%	>32 EURO 6 B7 fuel	90	0,3	

[^1]Assembly (A4) Intermediate storage

	Unit	Value
Beer Sten AS' sales and storage operation	t	1

Activities at Beer Sten AS are included as storage activity during the transport phase A4. Impacts associated with the storage are yearly activities and direct emissions divided by the annual sales of all natural stones.

LCA: Results

The results present the environmental and resource impacts, as well as delivered outputs, connected to the declared unit as described in EN 15804+A1
System boundaries ($\mathrm{X}=$ included, $\mathrm{MND}=$ module not declared, $\mathrm{MNR}=$ module not relevant)

Product stage			Assembly stage		Use stage							End of life stage				Beyond the system boundaries
			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{n} \\ & \stackrel{\rightharpoonup}{\mathbb{N}} \\ & \stackrel{\rightharpoonup}{亡} \end{aligned}$	$\begin{aligned} & \lambda \\ & \stackrel{\rightharpoonup}{0} \\ & \underline{E} \\ & 0 \\ & \text { N } \end{aligned}$	$\stackrel{\otimes}{\Omega}$								$\begin{aligned} & \stackrel{士}{0} \\ & \text { ㅇ } \\ & \text { N} \\ & \stackrel{0}{6} \end{aligned}$			
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
			X													

Environmental impact

Parameter	Unit	A4a	A4b	A4c	A4d	A4e	A4
GWP	$\mathrm{kg} \mathrm{CO}_{2}$-eq.	$5,35 \mathrm{E}+00$	$2,39 \mathrm{E}+01$	$8,18 \mathrm{E}-02$	$5,66 \mathrm{E}-05$	$1,09 \mathrm{E}+01$	$4,03 \mathrm{E}+01$
ODP	$\mathrm{kg} \mathrm{CFC}^{2} 11$-eq.	$9,72 \mathrm{E}-08$	$3,81 \mathrm{E}-07$	$1,54 \mathrm{E}-09$	$7,13 \mathrm{E}-13$	$2,06 \mathrm{E}-07$	$6,85 \mathrm{E}-07$
POCP	$\mathrm{kg} \mathrm{C}_{2} \mathrm{H}_{4}$-eq.	$8,50 \mathrm{E}-04$	$1,49 \mathrm{E}-02$	$1,39 \mathrm{E}-05$	$9,42 \mathrm{E}-09$	$1,85 \mathrm{E}-03$	$1,76 \mathrm{E}-02$
AP	$\mathrm{kg} \mathrm{SO}_{2}$-eq.	$1,39 \mathrm{E}-02$	$4,00 \mathrm{E}-01$	$1,78 \mathrm{E}-04$	$2,33 \mathrm{E}-07$	$2,37 \mathrm{E}-02$	$4,38 \mathrm{E}-01$
EP	$\mathrm{kg} \mathrm{PO}_{4}{ }^{3-}$-eq.	$3,53 \mathrm{E}-03$	$5,58 \mathrm{E}-02$	$5,23 \mathrm{E}-05$	$7,74 \mathrm{E}-08$	$6,98 \mathrm{E}-03$	$6,64 \mathrm{E}-02$
ADPM	$\mathrm{kg} \mathrm{Sb-eq.}^{\text {ADPE }}$	MJ	$1,47 \mathrm{E}-05$	$3,86 \mathrm{E}-05$	$2,62 \mathrm{E}-07$	$2,78 \mathrm{E}-10$	$3,50 \mathrm{E}-05$
$8,85 \mathrm{E}-05$							

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources
Resource use

| Parameter | Unit | A4a | A4b | A4c | A4d | A4e | A4 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RPEE | MJ | $1,16 \mathrm{E}+00$ | $5,01 \mathrm{E}+00$ | $6,56 \mathrm{E}-02$ | $1,35 \mathrm{E}-04$ | $8,74 \mathrm{E}+00$ | $1,50 \mathrm{E}+01$ |
| RPEM | MJ | $0,00 \mathrm{E}+00$ |
| TPE | MJ | $1,16 \mathrm{E}+00$ | $5,01 \mathrm{E}+00$ | $6,56 \mathrm{E}-02$ | $1,35 \mathrm{E}-04$ | $8,74 \mathrm{E}+00$ | $1,50 \mathrm{E}+01$ |
| NRPE | MJ | $7,94 \mathrm{E}+01$ | $2,94 \mathrm{E}+02$ | $1,25 \mathrm{E}+00$ | $6,11 \mathrm{E}-04$ | $1,67 \mathrm{E}+02$ | $5,41 \mathrm{E}+02$ |
| NRPM | MJ | $0,00 \mathrm{E}+00$ |
| TRPE | MJ | $7,94 \mathrm{E}+01$ | $2,94 \mathrm{E}+02$ | $1,25 \mathrm{E}+00$ | $6,11 \mathrm{E}-04$ | $1,67 \mathrm{E}+02$ | $5,41 \mathrm{E}+02$ |
| SM | kg | $0,00 \mathrm{E}+00$ |
| RSF | kg | $0,00 \mathrm{E}+00$ |
| NRSF | kg | $0,00 \mathrm{E}+00$ |
| W | kg | $7,94 \mathrm{E}+01$ | $2,94 \mathrm{E}+02$ | $1,25 \mathrm{E}+00$ | $6,11 \mathrm{E}-04$ | $1,67 \mathrm{E}+02$ | $5,41 \mathrm{E}+02$ |

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water
End of life - Waste

Parameter	Unit	A4a	A4b	A4c	A4d	A4e	A4
HW	kg	$4,93 \mathrm{E}-04$	$1,40 \mathrm{E}-03$	$7,74 \mathrm{E}-06$	$4,08 \mathrm{E}-09$	$1,03 \mathrm{E}-03$	$2,93 \mathrm{E}-03$
NHW	kg	$7,65 \mathrm{E}+00$	$4,05 \mathrm{E}+00$	$1,34 \mathrm{E}-01$	$2,12 \mathrm{E}-01$	$1,78 \mathrm{E}+01$	$2,99 \mathrm{E}+01$
RW	kg	$2,42 \mathrm{E}-05$	$1,00 \mathrm{E}-04$	$3,29 \mathrm{E}-07$	$3,27 \mathrm{E}-10$	$4,39 \mathrm{E}-05$	$1,68 \mathrm{E}-04$

HW Hazardous waste disposed: NHW Non hazardous waste disposed; RW Radioactive waste disposed
End of life - Output flow

Parameter	Unit	A4a	A4b	A4c	A4d	A4e	A4
CR	kg	$0,00 \mathrm{E}+00$					
MR	kg	$0,00 \mathrm{E}+00$					
MER	kg	$0,00 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$8,66 \mathrm{E}-01$	$0,00 \mathrm{E}+00$	$8,66 \mathrm{E}-01$
EEE	MJ	$0,00 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$1,20 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$1,20 \mathrm{E}+00$
ETE	MJ	$0,00 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$2,47 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$2,47 \mathrm{E}+00$

[^2]Figure 1: Relative impact contribution across all transport laps included in the A4 module

The relative contribution assessment shows that the transport lap A4b (sea freight from Portugal to Fredrikstad) is primarily the main contributor to all the included impact categories. The second largest contributor to all included environmental impact categories is A4e (transport from central storage in Fredrikstad to installation in Oslo). The third largest environmentally contributing transport lap in the A4 module is A4a (transport from stone manufacturing to harbor in Portugal). The transport from sea vessel to central storage (A4c) and in the central storage (A4d) in Fredrikstad contribute to negligible environmental burdens.

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase
Not relevant information for this A4 note. See the reference EPD NEPD-4059-3090 that this A4 note is valid for

Dangerous substances

凹 The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.
$\square \quad$ The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than $0,1 \%$ by weight.
$\square \quad$ The product contain dangerous substances, more then $0,1 \%$ by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.

Name	CAS no.	Amount

Indoor environment
Not relevant information for this A4 note. See the reference EPD NEPD-4059-3090 that this A4 note is valid for.

Carbon footprint

Calculations connected to climate change and global warming potential (GWP) includes greenhouse gas emissions from fossil sources.

Bibliography

ISO 14044:2006
Ecoinvent v.3.9

EN 15804:2012+A1:2013 v.1.0

ISO 21930:2007
NPCR Part A v.1.0

NPCR 018 v.1.0
Smith et al. 2014

Saxegård 2021

Environmental management - Life cycle assessment - Requirements and guidelines
Documentation of changes implemented in the ecoinvent database v3.9. Moreno Ruiz E., FitzGerald D., Bourgault G., Vadenbo C., loannidou D., Symeonidis A., Sonderegger T., Müller J., ., Valsasina L., Minas N., Baumann D.

Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products (24.11.2013)

Sustainability in building construction - Environmental declaration of building products
Part A for Construction products and services (07.04.2017).
Part B for Crushed Stones and Stone Products (20.05.2020)
Third IMO GHG Study 2014; International Maritime Organization (IMO) London, UK, April 2015; Smith, T. W. P.; Jalkanen, J. P.; Anderson, B. A.; Corbett, J. J.; Faber, J.; Hanayama, S.; O’Keeffe, E.; Parker, S.; Johansson, L.; Aldous, L.; Raucci, C.; Traut, M.; Ettinger, S.; Nelissen, D.; Lee, D. S.; Ng, S.; Agrawal, A.; Winebrake, J. J.; Hoen, M.; Chesworth, S.; Pandey, A.

Saxegård, S. A. (2021) EPD BeerEcoSten® LCA report. OR 31.21

epd-norway Global Program Operator	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo Norway	Phone: e-mail: web	$+4723088000$ post@epd-norge.no www.epd-norge.no
BEER STEN AS Etabl $\star 1879$ Et trygt valg	Owner of the declaration Beer Sten AS	Phone: e-mail: web	$+4741552474$ monica@beersten.no www.beersten.no
NCPSUS	Author of the Life Cycle Assessment Simon A. Saxegård	Phone: e-mail: web	$+4748257831$ Simon@norsus.no www.norsus.no

[^0]: CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

[^1]: Stones are transported from the factories in Portugal to Leixões harbor (45 km) before being shipped to Fredrikstad with a transshipment in Rotterdam. Sea vessel sizes have been adjusted according to information from EPD owner. Fuel consumption is based on Smith et al. (2014).

[^2]: CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

