

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021 for:

MEGAFIX MAXI SI ZERO (grey version)

Publisher: The Norwegian EPD Foundation Registration number: NEPD-4303-3539-EN

An EPD should provide current information and may be updated if conditions change. The stated validity is, therefore, subject to the continued registration and publication at www.environdec.com.

Programme: The International EPD[®] System; www.environdec.com Programme operator: EPD International AB EPD registration number: **S-P-08632**

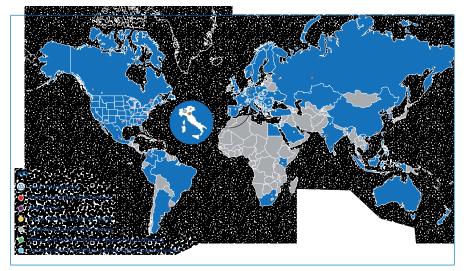
n Publication date:

2023-03-15

on Valid until:

2028-03-14

scope: 2023-10-09 Global


Revision date: Geographical

1. COMPANY DESCRIPTION / GOAL & SCOPE

Founded in 1937 in Milan, Italy, Mapei produces adhesives and complementary products for laying all types of floor, wall and coating materials, and also specializes in other chemical products used in the building industry, such as waterproofing products, specialty mortars, admixtures for concrete, cement additives, products for underground constructions and for the restoration of concrete and historical buildings.

There are currently 100 subsidiaries in the Mapei Group, with a total of 86 production facilities located around the world in 36 different countries and in 5 different continents. Mapei also has 32 central laboratories. Most locations are ISO 9001 and ISO 14001 or EMAScertified.

Mapei invests 12% in its company's total work-force and 5% of its turnover in Research & Development; in particular, 70% of its R&D efforts are directed to develop eco-sustainable and environmentally friendly products, which give important contribution to all major green rating systems for eco-sustainable buildings such as LEED and BREEAM.

LEED V4.1 is the latest version of Leadership in Environmental and Energy Design, an American protocol that enables buildings to be certified as eco-sustainable according to parameters

and credits described in the most widely adopted green building criteria in the world. Issued by the GBC US, it is mandatory for all LEED projects registered after October 2016.

Numerous changes have been made to the previous version: Mapei products play a part in obtaining important credits thanks to their EPD's (type III environmental declarations) and their products with very low emission of VOC.

BREEAM®

Launched in the UK in 1990, **BREEAM** (BRE Environmental Assessment Method) is a

protocol for sustainable building practices adopted mainly in the United Kingdom and in Scandinavian countries with the version **BREEAM NOR**.

By adopting this protocol, thanks to their EPD's and very low emission of VOC, Mapei products help towards obtaining relative credits.

Furthermore, Mapei has developed a sales and technical service network with offices all over the world and offers an efficient Technical Assistance Service that is valued by architects, engineers, contractors and owners.

Mapei Nordic production site is located in Sagstua, Norway. The production site consists of 5 factories: two factories for powderbased products, two factories for liquid admixtures and one factory for thermosetting plastic-based products.

The total size of the buildings is 24.000 sqm. The energy in these factories are provided from water electricity, geothermal heating and remaining approximately 10 % heated by bio oil.

Mapei Nordic focuses both on energy and on logistic optimisation, as for example the systematic Lean based improvement work. With

🐼 MAPEI

60 – 80 trailers per day, and 1650 transport lines, requires Mapei to work actively on optimizing our logistic process.

The goal of the study is to provide necessary data and documentation to produce an EPD according to the requirements of PCR Environdec (Version 1.11, 2021-02-05) under EN 15804:2012+A2:2019/AC:2021 and to have more comprehension about the environmental impacts related to **Megafix Maxi S1 Zero (grey)** manufactured in Mapei AS located in Sagstua (NO), including packaging of the finished products.

Target audiences of the study are customers and other parties with an interest in the environmental impacts of **Megafix Maxi S1 (grey)**. This analysis shall not support comparative assertions intended to be disclosed to the public.

2. PRODUCT DESCRIPTION

Megafix Maxi S1 Zero (grey) is a high-performance, deformable (S1) cementitious adhesive (C) with extended open time (E) and no vertical slip (T), for ceramic tiles and stone materials, with Low Dust technology and very low emissions of volatile organic compounds. Especially suitable for the installation of large-size porcelain tiles and natural stone. Classification in compliance with EN 12004.

Megafix Maxi SI Zero is available in 20 kg paper bags.

For more information about the product see the TDS (Technical Data Sheet) on Mapei AS website (www.mapei.com/NO).

3. CONTENT DECLARATION

The main components and ancillary materials of the products included in this EPD are the following:

Table 1: Composition	referred to 1 kc	g of product	packaged 20	kg paper bags

Materials	Percentage (%) by mass
Inorganic binder	< 45%
Filler	< 70%
Organic binder	< 8%
Additives	< 3%
Packaging Materials	Percentage (%) by mass
Paper (bag)	< 0,5% (0,2% of biogenic carbon)
LDPE (wrap and bag)	< 0,1%
Wood (pallet)	< 2% (0,9 % of biogenic carbon)

The product does not contain a concentration higher than 0,1% (by unit weight) of either carcinogenic substances or substances of very high concern (SVHC) on the REACH Candidate List published by the European Chemicals Agency.

4. DECLARED UNIT AND REFERENCE SERVICE LIFE

The declared unit is 1 kg of finished product packaging included.

Due to the selected system boundary, the reference service life of the products is not specified.

5. SYSTEM BOUNDARIES AND ADDITIONAL TECHNICAL INFORMATION

The approach is "cradle to gate" (A1–A3) with modules C1–C4 and module D and optional modules (A1–A3 + A4 – A5 + C + D):

- Al, A2, A3 (Product stage): extraction and processing of raw materials and packaging (A1), transportation up to the factory gate (A2), manufacturing of the finished product (A3).
- A4 A5 (Construction process stage): transport of the finished product to final customers and installation into the building.

- C1, C2, C3, C4 (End of Life stage): With a collection rate of 100% as C&D waste, the transports are carried out by lorry over 100 km (C2). A recycling ratio (C3) of 70% is considered in accordance with the European Directive 2008/98/CE. The remaining 30% is landfilled (C4).
- D (Resource recovery stage): contains credits from the recycling of the product in module C3. The product can be collected and recycled for use in substitution of virgin raw aggregates.

	Pr	oduct sta	ge	Constr proces	uction s stage		Use stage						End of life stage				Resource recovery stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
Module	Al	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Modules declared	Х	Х	Х	х	Х	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х
Geography	NO	NO, EU	NO	EU	EU	-	-	-	-	-	-	-	EU	EU	EU	EU	EU
Specific data			> 90%			-	-	-	-	-	-	-	-	-	-	-	-
Variation – products	Not-relevant						-	-	-	-	-	-	-	-	-	-	-
Variation – sites		N	ot-releva	nt		-	-	-	-	-	-	-	-	-	-	-	-

Table 2: System boundaries

MND: Module Not Declared

A brief description of production process is the following:

The production process starts from raw materials, that are purchased from external and intercompany suppliers and stored in the plant. Bulk raw materials are stored in specific silos and added automatically in the production mixer, according to the formula of the product. Other raw materials, supplied in bags, big bags or tanks, are stored in the warehouse and added automatically or manually in the mixer. The production is a discontinuous process, in which all the components are mechanically mixed in batches. The semi-finished product is then packaged, put on wooden pallets and stored in the finished products warehouse. The quality of final products is controlled before the sale.

Figure 1: production process detail - © Photo Halvor Gudim

Table 3: Transport to the building site (A4)

Scenario information	Value	Unit									
Means of transport: truck-trailer euro 5, gross weight 34-40 t, payload capacity 27											
Diesel consumption	0,002	l/100km									
Transport distance	1000	km									
Capacity utilisation (including empty runs)	85	%									
Gross density of products transported	~ 1400	kg/m³									
Capacity utilisation volume factor	1	-									

Table 4: Installation into the building (A5)

Scenario information	Value	Unit
Ancillary materials for installation	0	kg
Water use	0,0003	m³
Other resources use	0	kg
Electricity (Norwegian grid mix)	0,00063	MJ
Waste materials on building site before waste processing, generated by the product's installation (specified by type)	0,02 (wood) 0,00395 (paper) 0,000625 (plastics) 0,0107 (C&D waste)	kg
Output materials (specified by type) as result of waste processing at the building site e.g. of collection for recycling, for energy recovery, disposal (specified by route)	0,025 (incineration) 0,0107 (landfill)	kg
Direct emission to ambient air, soil and water	0	kg

Table 5: End of Life (C1-C4)

Scenario information	Value	Unit
Collected separately	0	kg
Collected with mixed construction waste	1,06	kg
Reuse	0	kg
Recycling	0,7	kg
Energy recovery	0	kg
Landfill	0,3	km
Transport to recycling	100	km
Transport to landfill	100	km

6. CUT-OFF RULES AND ALLOCATION

Criteria for the exclusion of inputs and outputs (cut-off rules) in the LCA, information modules and any additional information are intended to support an efficient calculation procedure. They are not applied in order to hide data. Cut-off criteria, where applied, are described in Table 6.

Input flows are covered for the whole formula.

Table 6: Cut-off criteria

Process excluded from study	Cut-off criteria	Quantified contribution from process
A3: production (auxiliary materials)	Less than 10 ⁻⁵ kg/kg of finished product	Sensitivity study demonstrates a relative contribution lower than 0,5%

For the allocation procedure and principles consider the following table (Table 7):

Table 7: Allocation procedure and principles

Module	Allocation Principle
Al	All data are referred to 1 kg of product A1: electricity is allocated to the specific production line
A3	All data are referred to 1 kg of packaged product A3-wastes: all data are allocated to the whole production plant

7. ENVIRONMENTAL PERFORMANCE AND INTERPRETATION

Climate change

GWPtotal - Global Warming Potential refers to the emission/presence of GHGs (greenhouse gases) in the atmosphere (mainly CO_2 , N_2O , CH_4) which contribute to the increase in the temperature of the planet. GWP-total considers:

- GWP-fossil

- GWP-biogenic

- GWP-luluc (land use and land use change)

Ozone Depletion

Ozone Depletion Potential refers to the degradation of the stratospheric layer of the ozone involved in blocking the UV component of sunrays. Depletion is due to particularly reactive components that originate from chlorofluorocarbon (CFC) or chlorofluoromethane (CFM).

ODP

Acidification

Acidification Potential refers to the emission of specific acidifying substances (i.e. NOx, SOx) in the air. These substances decrease the pH of the rainfall with predictable damages to the ecosystem.

AP

Desse Ori

EP

Eutrophication

Eutrophication Potential refers to the nutrient enrichment, which determines unbalance in ecosystems and causes the death of the fauna and decreased biodiversity in flora. It considers:

- EP-freshwater: acquatic freshwater
- EP-marine: acquatic marine
- EP-terrestrial

The Photochemical Ozone Creation Potential is the ozone formation in low atmosphere. This is quite common in the cities where a great amount of pollutants (like VOC and NOx) are emitted every day (industrial emissions and vehicles). It is mainly diffused during the summertime.

Depletion of abiotic resources – minerals and metals Abiotic Depletion Potential elements refers to the depletion of the mineral resources.

ADP minerals&metals

Depletion of abiotic resources – fossil fuel Abiotic Depletion Potential fossil fuel refers to the depletion of the fossil fuel resources.

ADP - fossil

Water use

It expresses the potential deprivation of water, that consists in not having the water needs satisfied.

WDP

🐼 MAPEI

The following tables show the environmental impacts for the products considered according to the requirements of EN15804:2012+A2:2019/ AC:2021. The results are referred to the declared unit (see § 4). The additional environmental indicators are not declared.

MEGAFIX MAXI SI ZERO (grey)

(1 kg of product in 20 kg bag)

Table 8: MEGAFIX MAXI SI ZERO: Potential environmental impact – mandatory indicators according to EN 15804 referred to 1 kg of product in 20 kg bgg

Indicator	Unit	Al	A2	A3	A1-A3	A4	A5	С1	C2	C3	C4	D
GWP	(kg CO ₂ eq.)	3,87E-01	1,82E-02	-2,01E-02	3,85E-01	4,96E-02	6,66E-02	2,38E-03	7,36E-03	1,24E-02	4,65E-03	-1,07E-02
GWP _{FOSSIL}	(kg CO ₂ eq.)	3,96E-01	1,80E-02	8,34E-03	4,22E-01	4,91E-02	3,17E-02	2,35E-03	7,28E-03	2,75E-03	4,62E-03	-1,06E-02
GWP	(kg CO ₂ eq.)	-9,06E-03	6,62E-05	-2,85E-02	-3,75E-02	1,50E-04	3,49E-02	2,31E-05	2,56E-05	9,65E-03	1,56E-05	-3,25E-05
GWP	(kg CO ₂ eq.)	3,85E-05	8,41E-05	1,56E-05	1,38E-04	2,73E-04	3,64E-06	5,00E-07	4,92E-05	1,27E-05	8,53E-06	-4,10E-06
ODP	(kg CFC 11 eq.)	1,53E-09	2,91E-14	4,94E-11	1,58E-09	2,94E-15	5,80E-15	3,45E-14	7,17E-16	4,10E-15	1,09E-14	-1,41E-14
AP	(mol H⁺ eq.)	5,79E-04	1,91E-04	3,87E-05	8,09E-04	4,37E-05	1,79E-05	5,15E-06	8,00E-06	1,42E-05	3,28E-05	-1,09E-05
EP	(kg P eq.)	5,03E-06	5,07E-08	6,10E-07	5,69E-06	1,46E-07	8,25E-09	6,90E-09	2,61E-08	7,90E-09	7,83E-09	-6,14E-09
	(kg N eq.)	1,43E-04	5,82E-05	1,23E-05	2,13E-04	1,30E-05	6,77E-06	1,16E-06	2,52E-06	6,50E-06	8,38E-06	-4,60E-06
EP	(mol N eq.)	1,74E-03	6,42E-04	1,32E-04	2,52E-03	1,58E-04	7,70E-05	1,22E-05	3,05E-05	7,17E-05	9,21E-05	-5,07E-05
POCP	(kg NMVOC eq.)	4,74E-04	1,48E-04	3,49E-05	6,57E-04	3,77E-05	1,78E-05	3,13E-06	6,80E-06	1,77E-05	2,55E-05	-1,20E-05
ADP*	(kg Sb eq.)	2,91E-07	1,90E-09	1,13E-08	3,04E-07	4,10E-09	1,97E-10	6,43E-10	7,36E-10	3,05E-09	4,74E-10	-8,78E-10
ADP _{FOSSIL} *	(MJ)	3,66E+00	2,42E-01	1,75E-01	4,07E+00	6,55E-01	2,28E-02	4,26E-02	9,58E-02	5,38E-02	6,05E-02	-1,68E-01
WDP*	(m ³ world eq.)	3,97E+00	5,76E-04	2,47E-03	3,97E+00	4,40E-04	1,68E-02	5,29E-04	8,17E-05	5,31E-04	5,07E-04	-9,02E-05

GWP_{TOTAL}: Global Warming Potential total; **GWP**_{FOSSIL}: Global Warming Potential fossil fuels; **GWP**_{BIOCENIC}: Global Warming Potential biogenic; **GWP**_{LULUC}: Global Warming Potential, freshwater; **EP**_{MARINE}: Eutrophication Potential, marine; **EP**_{TERRESTRIAL}: Eutrophication Potential, terrestrial; **POCP**: Formation potential of tropospheric ozone; **ADP**_{MINERALSEMETALS}: Abiotic Depletion Potential for fossil resources; **WDP**: Water Deprivation Potential.

* The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is a limited experienced with the indicator

Table 9: MEGAFIX MAXI SI ZERO: Potential environmental impact – additional mandatory and voluntary indicators referred to 1 kg of product in 20 kg bag

Indicator	Unit	Al	A2	A3	A1-A3	A4	A5	СІ	C2	C3	C4	D
GWP-GHG	(kg CO ₂ eq.)	3,92E-01	1,78E-02	8,13E-03	4,18E-01	4,86E-02	3,17E-02	2,34E-03	7,20E-03	2,70E-03	4,55E-03	-1,05E-02

GWP-GHG: The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 10: MEGAFIX MAXI SI ZERO: Use of resources referred to 1 kg of product in 20 kg bag

Indicator	Unit	Al	A2	A3	A1-A3	A4	A5	СІ	C2	C3	C4	D
PERE	МЈ	2,74E-01	3,05E-02	3,72E-01	6,76E-01	3,72E-02	4,67E-03	2,37E-02	6,64E-03	4,32E-03	9,09E-03	-7,69E-03
PERM	МЈ	0,00E+00	0,00E+00	4,47E-01	4,47E-01	0,00E+00						
PERT	МЈ	2,74E-01	3,05E-02	8,19E-01	1,12E+00	3,72E-02	4,67E-03	2,37E-02	6,64E-03	4,32E-03	9,09E-03	-7,69E-03
PENRE	МЈ	3,66E+00	2,43E-01	1,75E-01	4,08E+00	6,57E-01	2,28E-02	4,26E-02	9,62E-02	5,39E-02	6,06E-02	-1,68E-01
PENRM	МЈ	0,00E+00	0,00E+00	2,88E-02	2,88E-02	0,00E+00						
PENRT	МЈ	3,66E+00	2,43E-01	2,04E-01	4,11E+00	6,57E-01	2,28E-02	4,26E-02	9,62E-02	5,39E-02	6,06E-02	-1,68E-01
SM*	kg	2,51E-03	0,00E+00	0,00E+00	2,51E-03	0,00E+00						
RSF	МЈ	0,00E+00										
NRSF	МЈ	0,00E+00										
FW	m ³	2,15E-03	3,15E-05	6,70E-05	2,25E-03	4,21E-05	3,94E-04	2,25E-05	7,67E-06	1,51E-05	1,54E-05	-2,33E-05

PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM: Use of renewable primary energy resources used as raw materials; PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PENRE: Use of non-renewable primary energy resources used as raw materials; PENRM: Use of non-renewable primary energy resources used as raw materials; PENRM: Use of non-renewable primary energy resources used as raw materials; PENRM: Use of non-renewable primary energy resources used as raw materials; PENRM: Use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials; PENRM: Use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); SM: Use of secondary material; RSF: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels; FW: Net use of fresh water.

* Referred only to 1 kg of product without packaging

Table 11: MEGAFIX MAXI SI ZERO: Waste production and output flows referred to 1 kg of product in 20 kg bag

Indicator	Unit	AI	A2	A3	A1-A3	A4	A5	СІ	C2	C3	C4	D
HWD	kg	4,37E-04	4,01E-12	6,13E-06	4,44E-04	3,14E-12	1,61E-12	3,69E-12	5,09E-13	6,74E-13	3,11E-12	-3,36E-11
NHWD	kg	1,52E-02	5,67E-05	6,18E-03	2,14E-02	9,41E-05	1,51E-02	3,22E-05	1,57E-05	1,43E-05	3,10E-01	-1,51E-02
RWD	kg	4,34E-05	5,83E-06	3,55E-06	5,27E-05	8,09E-07	7,12E-07	6,80E-06	1,79E-07	7,10E-07	6,75E-07	-7,49E-07
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for recycling	kg	0,00E+00	0,00E+00	2,58E-03	2,58E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for energy recovery	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Exported energy, electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Exported energy, thermal	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
HWD: Hazardous waste dispo	sed; NH	IWD: Non-H	azardous wa	ste disposed	l; RWD : Radi	oactive was	te disposed					

Table 12: MEGAFIX MAXI SI ZERO: Information on biogenic carbon content at the factory gate referred to 1 kg of product in 20 kg bag

Biogenic Carbon Content	Unit	Quantity
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in packaging	kg C	1,02E-02

Tables from 7 to 11 show absolute results for all the environmental categories considered.

The main contribution to the environmental impact categories in the product life cycle comes from extraction and processing of raw materials (module A1). Its relative contribution is over 50% in some categories (such as GWP_{TOTAL}, GWP_{FOSSIL}, ADP_{MINERALS&METALS}, WDP). The production stage (module A3) is relevant especially for the GWP_{BIOGENIC} with a negative contribution due to the packaging components. In terms of GWP, module A5 gives a relevant contribution especially in the biogenic carbon impact category. This is due to the disposal of the packaging that is the principal responsible of the biogenic carbon content. Another relevant contribution of module A5 concerns the WDP. Referring to the biogenic carbon contained in the product and the packaging, the negative impacts of raw materials and packaging (A1 and A3) are compensated by the disposal of them in the modules A5 and C3. The specific quantity of the recycled material contained in the product is shown in Table 9 as SM (Secondary Material) indicator. Transportation modules, especially A4, have relevant importance in terms of GWP_{LULUC}, and EPs, while the contribution became less relevant in the other environmental categories.

An overview about the average contribution of the different modules considered in the system boundaries are shown in Table 13.

ENVIRONMEN IMPACT	TAL	≟ → ĨĨ A1-A3		A5	cı		C3	C4	D	і́ща – Хоз ↑
CLIMATE CHANGE (TOTAL)		3,85E-01	4,96E-02	6,66E-02	 2,38E-03	 7,36E-03	 1,24E-02	 4,65E-03	 -1,07E-02	5,17E-01 kg CO ₂ eq.
ACIDIFICATION	, o', o', o', o', o', o', o', o', o', o'	8,09E-04	4,37E-05	1,79E-05		 8,00E-06	 1,42E-05	3,28E-05	 -1,09E-05	9,20E-04 mol H+ eq.
DEPLETION OF ABIOTIC RESOURCES (FOSSIL)		4,07E+00	6,55E-01	2,28E-02	4,26E-02	9,58E-02	 5,38E-02	 6,05E-02	-1,68E-01	4,84+00 MJ
WATER USE		3,97+00	 4,40E-04	1,68E-02	5,29E-04	8,17E-05		5,07E-04	 -9,02E-05	3,99+00 m³ world eq.

Table 13: Some environmental impacts of the Megafix Maxi SI Zero

More details about electrical mix used in this EPD, is shown below:

		Data source	GWP-GHG	Unit
Residual	electricity grid mix (NO) – 2021	AIB	0,46*	kg CO2-eqv/kWh
*CML2001	- Aug. 2016			

8. DATA QUALITY

Table 13: Data quality

Dataset & Geographical reference	Database (source)	Temporary reference					
A1; A3							
Inorganic binder	NEPD-4144-3354-NO;	2023					
Filler	Sphera Database	2021					
Additives	Sphera Database	2021					
Organic binder	Sphera Database	2021					
Residual electricity grid mix (NO)	Sphera Database;	2021					
Packaging components (EU)	Sphera Database; PlasticsEurope	2021					
	A2						
Truck, Euro 5, 27t payload (GLO)	Sphera Database	2021					
Light train, gross tonne weight 500t / 363t payload (GLO)	Sphera Database	2021					
Oceanic ship (27500 DWT – GLO)	Sphera Database	2021					
Diesel for transport (EU)	Sphera Database	2018					
Heavy Fuel Oil (EU)	Sphera Database	2018					
Electricity grid mix (EU)	Sphera Database	2018					
	A4						
Truck, Euro 6, 27t payload (GLO)	Sphera Database	2021					
Diesel for transport (EU)	Sphera Database	2018					
	A5						
Tap water from surface water	Sphera Database	2021					
Commercial waste in municipal waste incineration plant	Sphera Database	2021					
Inert matter on landfill	Sphera Database	2021					
Electricity grid mix (NO)	Sphera database	2018					
c	C1 – C4						
Truck (EURO 6 - 9,3 ton payload – GLO)	Sphera Database	2021					
Electricity grid mix (EU)	Sphera Database	2018					
Diesel for transport (EU)	Sphera Database	2018					
Construction waste dumping (EU)	Sphera Database	2021					
Construction waste treatment (EU)	Sphera Database	2021					

All data included in table above refer to a period between 2018 and 2021; the most relevant ones are specific from supplier, while the others (i.e. transport and minor contribution dataset), come from European and global databases. All dataset are not more than 10 years old according to EN 15804 §6.3.8.2 "Data quality requirements".

The Quality level concerning datasets used in the EPD can be considered as "very good" or "good" according to Annex E of the EN 15804 (current version).

Primary data concern the year 2021 and represent the whole annual production.

9. ADDITIONAL INFORMATION

9.1 CO₂ offset

Total CO₂ emissions measured throughout the entire life cycle have been offset through the purchasing of certified carbon credits in support of renewable energy and forestry protection projects.

9.2 Indication for calculation of Module A4 (Transport from the factory to the jobsite)

In order to calculate the impact related to the transport of 1 kg of product from the factory gate (Sagstua) to the jobsite, you can use the following formula:

Transport Impact = EF (kg/DU) * distance (km)

EF: Emission Factor; DU: declared Unit

Table 15: The EFs are related to 1 kg of product transported with truck EURO 5 and EURO 6 $\,$

Indicator	Unit	EF (EURO 5)	EF (EURO 6)	
GWP	(kg CO ₂ eq.)	4,79E-05	4,83E-05	
GWP _{FOSSIL}	(kg CO ₂ eq.)	4,81E-05	4,85E-05	
GWP	(kg CO ₂ eq.)	-4,70E-07	-4,75E-07	
GWP	(kg CO ₂ eq.)	3,24E-07	3,28E-07	
ODP	(kg CFC 11 eq.)	4,72E-18	4,77E-18	
AP	(mol H ⁺ eq.)	1,46E-07	5,04E-08	
EP _{FRESHWATER}	(kg P eq.)	1,72E-10	1,74E-10	
EPMARINE	(kg N eq.)	6,58E-08	1,54E-08	
	(mol N eq.)	7,39E-07	1,87E-07	
POCP	(kg NMVOC eq.)	1,31E-07	4,27E-08	
	(kg Sb eq.)	4,84E-12	4,90E-12	
ADP _{FOSSIL}	(MJ)	6,31E-04	6,38E-04	
WDP	(m ³ world eq.)	5,38E-07	5,44E-07	

Example:

If the product is transported by truck (EURO 5) from Sagstua (production plant) to Oslo (Jobsite) for approximately 90 km, the GWP impact will be:

GWP_{TOTAL} = 4,79E-05 * 90km = 4,31E-03 kg CO₂eq

9.3 VOC emissions

The product meets the criteria of the following volountary labels:

• EC1^{PLUS} (GEV Association) license number 17493

9.4 End of life / recyclability

The finished products can be recycled at the end of life, after demolition, according to the national laws.

10. DIFFERENCES VERSUS PREVIOUS VERSION

New product name, chapter 9 has been update. Editorial changes.

11. VERIFICATION AND REGISTRATION

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

CEN standard EN15804 served as the Core Product Category Rules (PCR)					
PCR:	PCR 2019:14 Construction products (EN 15804:A2), Version 1.11, 2021-02-05, UN CPC code 54				
PCR review was conducted by:	The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/ contact.				
Independent third-party verification of the declaration and data, according to ISO 14025:2006:	EPD Process Certification				
Third party verifier:	Certiquality S.r.l. Number of accreditation: 008PRD rev.000				
Accredited or approved by:	Accredia				
Procedure for follow-up of data during EPD validity involves third-party verifier	⊠ Yes □ No				

12. REFERENCES

- EN12004: ADHESIVES FOR TILES REQUIREMENTS, EVALUATION OF CONFORMITY, CLASSIFICATION AND DESIGNATION
- · EN 15804: SUSTAINABILITY OF CONSTRUCTION WORKS -ENVIRONMENTAL PRODUCT DECLARATIONS - CORE RULES FOR THE PRODUCT CATEGORY OF CONSTRUCTION PRODUCTS
- EUROPEAN DIRECTIVE 2008/98/EC
- · EUROPEAN RESIDUAL MIXES VERSION 1.0, 2022-05-31 (AIB: ASSOCIATION OF ISSUING BODIES)
- GENERAL PROGRAMME INSTRUCTIONS OF THE INTERNATIONAL EPD® SYSTEM, VERSION 3.01
- ISO 14025 ENVIRONMENTAL LABELS AND DECLARATIONS -TYPE III ENVIRONMENTAL DECLARATIONS - PRINCIPLES AND PROCEDURES
- · ISO 14044 ENVIRONMENTAL MANAGEMENT LIFE CYCLE ASSESSMENT - REQUIREMENTS AND GUIDELINES
- PCR 2019:14 CONSTRUCTION PRODUCTS (EN 15804: A2), UN CPC CODE 54; VERSION 1.11

CONTACT INFORMATION

EPD owner:

Mapei AS

www.mapei.com/NO-NO/

LCA author:

Mapei SpA

www.mapei.it; Environmental Sustainability Office

Programme operator:

EPD International AB

Address: EPD International AB Box 210 60 SE-100 31 Stockholm Sweden

Website: www.environdec.com E-mail: info@environdec.com

HEAD OFFICE MAPEI SpA Via Cafiero, 22 - 20158 Milan Tel. +39-02-37673.1 mapei.com

mapei.com mapei@mapei.it

ANNEX 1

ANNEX 1: Self declaration from EPD owner

Specific Norwegian requirements

1 Applied electricity data set used in the manufacturing phase

The electricity mix for the electricity used in manufacturing (A3) is the residual electricity grid mix

<0,46 kg CO₂ eqv/kWh>

2 Content of dangerous substances

Image: The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

- □ The product contains substances that are less than 0.1% by weight given by the REACH Candidate or the Norwegian priority list.
- □ The product contains dangerous substances more than 0.1% by weight given in the REACH candidate list or the <u>Norwegian Priority List</u>, concentrations is given in the EPD:

Dangerous substances from the REACH candidate list or the Norwegian Priority List	CAS No.	Quantity (concentration, wt%/FU(DU)).
Substance 1		
Substance n		

3 Transport from the place of manufacture to a central warehouse

Transport distance, and CO₂-eqv./DU from transport of the product from factory gate to central warehouse in Oslo shall be given. The following table shall be included in the EPD:

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy use	Unit	Value (I/t)	kg CO₂- eq./DU
Boat							
Truck	85	27 tonn, EURO 6	95	0,0160	l/tkm	1,52	4,59E-03
Railway							
Rail							
Air							
Total	85	27 tonn, EURO 6	95	0,0160	l/tkm	1,52	4,59E-03

4 Impact on the indoor environment

- □ Indoor air emission testing has been performed; specify test method and reference:
- ☑ No test has being performed
- □ Not relevant; specify : the product is a waterproofing membranes for underground structures. It does not affect the indoor air quality.