

Environmental product declaration

In accordance with 14025 and EN15804+A2

Leca® Mix, Leca Portugal

The Norwegian EPD Foundation

Owner of the declaration:

Leca International

Product:

Leca® Mix, Leca Portugal

Declared unit:

1 m3

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR Part A: Construction products and services. Ver. 1.0. March 2021

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-4573-3825-EN

Registration number:

NEPD-4573-3825-EN

Issue date: 16.06.2023

Valid to: 16.06.2028

EPD Software:

LCA.no EPD generator ID: 56769

General information

Product

Leca® Mix, Leca Portugal

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00

web: post@epd-norge.no

Declaration number: NEPD-4573-3825-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR Part A: Construction products and services. Ver. 1.0. March 2021

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m3 Leca® Mix, Leca Portugal

Declared unit with option:

A1,A2,A3,A4,C1,C2,C3,C4,D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individualthird party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii)the process is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT08

Third party verifier:

Anne Rønning, Norsus AS (no signature required)

Owner of the declaration:

Leca International Contact person: Tone Storbråten Phone: +47 41 43 71 00 e-mail: info@leca.no

Manufacturer:

Leca International Årnesvegen 1 2009 Nordby, Norway

Place of production:

Leca Portugal Avelar Estrada Nacional N.º 110, s/n Tojeira 3240-356 Avelar Portugal, Portugal

Management system:

ISO 14001ISO 9001

Organisation no:

918 799 141

Issue date: 16.06.2023

Valid to: 16.06.2028

Year of study:

2021

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Ana Raquel Fernandes

Reviewer of company-specific input data and EPD: Tone Storbråten

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Lightweight, insulating premix of lightweight expanded clay aggregate with a particle size between 4 mm and 10 mm, with hydraulic binder and additives. It could be used for filling of ground floors, raised floors, technical floors and roofs, indoor or outdoor. It can be applied by pumping, using Putzmeister type machines. The product can also be applied manually, in a bucket, with a mixer / concrete mixer. The product is sold in 25 L bags, with the approximately weight of 12 Kg. In total, each pallet has 40 bags.

Product specification

Lightweight concrete resulting from the mixing of expanded clay aggregates Leca® in a factory with CE marking in accordance with the standard EN 13055-1:2002 with a hydraulic binder. The lifetime of the product after application is equivalent to that of conventional concrete. All applied material can be 100% recycled.

Materials	Value	Unit
Leca® expanded clay	91	% (v/v)
Recycled binder	9	% (v/v)
Wooden pallet	1	unit per DU
Plastic packaging	6	Kg per DU

Technical data:

The relevant technical properties for Leca® Mix are provided below:

- Reaction to fire: non-combustible (Class A1)
- Thermal conductivity of the mixture hardened and dry (according to EN 1745-2002): 0,156 W/m.K

Market:

Portugal and Spain.

Reference service life, product

Not relevant.

Reference service life, building or construction works

Not relevant.

LCA: Calculation rules

Declared unit:

1 m3 Leca® Mix, Leca Portugal

Cut-off criteria:

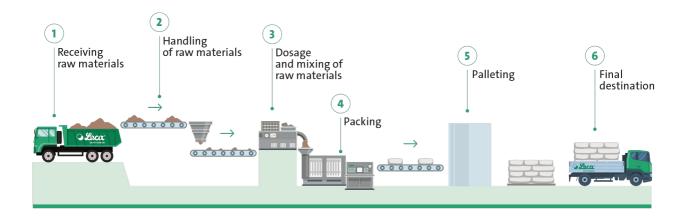
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Binder	ecoinvent 3.6	Database	2019
Packaging	ecoinvent 3.6	Database	2019
Packaging	Modified ecoinvent 3.6	Database	2019
Dolomite	ecoinvent 3.6	Database	2019
Clay	LCA.no	Database	2021
Waste products	LCA.no	Database	2021

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product sta	ge		uction on stage				Use stage					End of life stage			Beyond the system boundaries
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	X	X	X	MND	MND	MND	MND	MND	MND	MND	MND	X	X	X	X	X

System boundary:

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (km)	36,7 %	400	0,044	l/tkm	17,60
De-construction demolition (C1)	Unit	Value			
Demolition of building per kg of LWA block (kg)	kg/DU	530,00			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (km)	38,8 %	50	0,045	l/tkm	2,25
Waste processing (C3) Waste treatment per kg of LWA block after	Unit	Value 397,50			
demolition (kg)	kg	597,50			
Disposal (C4)	Unit	Value			
Disposal, landfilling of waste LWA (kg)	kg	132,50			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of primary aggregates (kg)	kg	397,50			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	Environmental impact												
	Indicator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D		
	GWP-total	kg CO ₂ -eq	1,16E+02	3,38E+00	8,58E+00	3,20E+01	2,12E+00	4,00E+00	2,86E-01	1,09E+00	-9,29E-01		
	GWP-fossil	kg CO ₂ -eq	1,46E+02	3,38E+00	8,43E+00	3,20E+01	2,12E+00	4,00E+00	2,82E-01	1,09E+00	-9,10E-01		
	GWP-biogenic	kg CO ₂ -eq	-3,02E+01	1,38E-03	3,25E-02	1,30E-02	3,98E-04	0,00E+00	2,44E-03	1,27E-03	-1,82E-02		
	GWP-luluc	kg CO ₂ -eq	1,54E-01	1,18E-03	1,16E-01	1,12E-02	1,67E-04	1,40E-03	3,91E-04	2,67E-04	-6,15E-04		
(3)	ODP	kg CFC11 -eq	1,04E-05	7,71E-07	4,33E-07	7,30E-06	4,58E-07	8,88E-07	5,57E-08	4,11E-07	-1,66E-07		
Œ.	АР	mol H+ -eq	8,68E-01	1,38E-02	7,10E-02	1,31E-01	2,22E-02	1,63E-02	2,28E-03	9,67E-03	-8,19E-03		
	EP-FreshWater	kg P -eq	4,15E-03	2,66E-05	4,14E-04	2,51E-04	7,72E-06	3,14E-05	1,78E-05	1,23E-05	-2,42E-05		
-	EP-Marine	kg N -eq	2,18E-01	4,10E-03	9,17E-03	3,88E-02	9,79E-03	4,85E-03	6,70E-04	3,59E-03	-2,84E-03		
	EP-Terrestial	mol N -eq	2,50E+00	4,53E-02	1,04E-01	4,29E-01	1,06E-01	5,35E-02	7,71E-03	3,96E-02	-3,34E-02		
	POCP	kg NMVOC -eq	7,33E-01	1,39E-02	2,85E-02	1,31E-01	2,95E-02	1,64E-02	2,07E-03	1,13E-02	-8,81E-03		
H)	ADP-minerals&metals ¹	kg Sb -eq	5,19E-04	9,16E-05	5,42E-05	8,67E-04	3,25E-06	1,08E-04	3,58E-06	9,79E-06	-8,08E-05		
	ADP-fossil ¹	MJ	1,73E+03	5,10E+01	1,05E+02	4,83E+02	2,92E+01	6,03E+01	8,76E+00	2,99E+01	-1,54E+01		
<u>%</u>	WDP ¹	m^3	3,39E+03	4,86E+01	-1,78E+03	4,60E+02	6,20E+00	5,75E+01	9,67E+02	1,84E+02	-7,22E+02		

GWP total Global Warming Potential total; GWP fossil Global Warming Potential fossil fuels; GWP biogenic Global Warming Potential biogenic; GWP luluc Global W Potential land use change; ODP Ozone Depletion; AP Acidification; EP freshwater Eutrophication aquatic freshwater; EP marine Eutrophication aquatic marine; EP terrestrial Eutrophication terrestrial; POCP Photochemical zone formation; ADPE Abiotic Depletion Potential minerals and metals; ADPf Abiotic Depletion Potential fossil

Remarks to environmental impacts

Due to polluter-pay-principle, the emissions from waste are not included.

Biogenic carbon from biofuels are balanced to zero since they have their input and output in the same module.

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the

Additio	Additional environmental impact indicators												
In	dicator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D		
	PM	Disease incidence	1,73E-05	2,43E-07	1,70E-07	2,30E-06	2,68E-06	2,64E-07	3,66E-08	2,06E-07	-1,75E-07		
	IRP ²	kgBq U235 -eq	4,54E+00	2,23E-01	2,24E-01	2,11E+00	1,27E-01	2,64E-01	1,47E-01	1,37E-01	-1,41E-01		
	ETP-fw ¹	CTUe	3,44E+03	3,76E+01	1,52E+02	3,55E+02	1,60E+01	4,44E+01	6,21E+00	1,63E+01	-1,59E+01		
46.* *****	HTP-c ¹	CTUh	7,12E-08	0,00E+00	3,19E-09	0,00E+00	5,30E-10	0,00E+00	3,98E-10	6,63E-10	-7,95E-10		
8° E	HTP-nc ¹	CTUh	1,02E-06	4,06E-08	1,17E-07	3,84E-07	1,48E-08	4,80E-08	5,57E-09	1,18E-08	-1,95E-08		
	SQP ¹	dimensionless	4,98E+03	3,52E+01	3,62E+01	3,33E+02	3,55E+00	4,16E+01	4,96E+00	1,15E+02	3,49E+01		

PM Particulate Matter emissions; IRP Ionizing radiation – human health; ETP-fw Eco toxicity – freshwater; HTP-c Human toxicity – cancer effects; HTP-nc Human toxicity – non cancer effects; SQP Soil Quality (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource us	Resource use													
Inc	dicator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D			
	PERE	MJ	6,28E+02	7,20E-01	5,82E+01	6,81E+00	1,59E-01	8,52E-01	4,51E+00	1,07E+00	-3,61E+00			
	PERM	MJ	2,78E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
₽ S	PERT	MJ	9,06E+02	7,20E-01	5,82E+01	6,81E+00	1,59E-01	8,52E-01	4,51E+00	1,07E+00	-3,61E+00			
	PENRE	MJ	1,48E+03	5,10E+01	1,05E+02	4,83E+02	2,92E+01	6,08E+01	8,77E+00	2,99E+01	-1,63E+01			
Å	PENRM	MJ	2,58E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
IA	PENRT	MJ	1,73E+03	5,10E+01	1,05E+02	4,83E+02	2,92E+01	6,08E+01	8,77E+00	2,99E+01	-1,63E+01			
	SM	kg	9,31E-01	0,00E+00	1,02E-03	0,00E+00	1,43E-02	2,42E-02	7,54E-03	0,00E+00	-3,11E-02			
2	RSF	MJ	3,00E+00	2,58E-02	4,34E-02	2,44E-01	3,88E-03	3,05E-02	9,14E-02	2,22E-02	-7,37E-02			
凾	NRSF	MJ	1,12E+01	9,19E-02	6,16E-03	8,70E-01	-5,83E-02	1,09E-01	-5,66E-03	4,80E-02	-7,57E-02			
8	FW	m^3	8,22E-01	5,37E-03	9,26E-02	5,08E-02	1,50E-03	6,36E-03	1,50E-02	3,68E-02	-5,66E-01			

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERT Use of renewable primary energy resources used as raw materials; PERT Total use of renewable primary energy resources; PENRE Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM Use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; FW Use of net fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

E	End of life - Waste													
	Inc	licator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D		
		HWD	kg	2,82E-01	2,60E-03	3,58E-02	2,46E-02	8,59E-04	3,07E-03	8,76E-04	0,00E+00	-3,71E-03		
	Ū	NHWD	kg	6,24E+00	2,44E+00	5,17E-01	2,31E+01	3,46E-02	2,88E+00	2,77E-02	1,33E+02	-1,13E-01		
	8	RWD	kg	5,60E-03	3,48E-04	2,00E-04	3,29E-03	2,03E-04	4,10E-04	9,27E-05	0,00E+00	-1,22E-04		

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed;

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End	End of life - Output flow													
	Indicator		Unit	A1	A2	A3	A4	C1	C2	C3	C4	D		
	Ø D	CRU	kg	0,00E+00										
	3	MFR	kg	3,28E-01	0,00E+00	2,28E-01	0,00E+00	1,41E-02	3,38E-04	3,98E+02	0,00E+00	-7,29E-04		
	D₽	MER	kg	1,98E-02	0,00E+00	2,93E-06	0,00E+00	4,36E-05	2,02E-02	9,15E-04	0,00E+00	-2,73E-02		
	50	EEE	MJ	7,32E-02	0,00E+00	5,88E-02	0,00E+00	1,50E-04	2,34E-03	1,57E-03	0,00E+00	-6,58E-03		
	DB.	EET	MJ	1,11E+00	0,00E+00	8,90E-01	0,00E+00	2,26E-03	3,53E-02	2,37E-02	0,00E+00	-9,96E-02		

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported energy Thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Unit	At the factory gate									
kg C	0,00E+00									
kg C	8,27E+00									
	kg C									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Portugal (kWh)	ecoinvent 3.6	405,87	g CO2-eg/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Additional Environmental Information

Environmental i	Environmental impact indicators EN 15804+A1 and NPCR Part A v2.0											
Indicator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D		
GWP	kg CO ₂ -eq	1,44E+02	3,35E+00	8,82E+00	3,17E+01	2,09E+00	3,98E+00	2,78E-01	1,06E+00	-9,74E-01		
ODP	kg CFC11 -eq	8,80E-06	6,09E-07	4,04E-07	5,76E-06	3,64E-07	7,20E-07	6,88E-08	3,31E-07	-1,51E-07		
POCP	kg C ₂ H ₄ -eq	1,23E-01	4,47E-04	2,25E-03	4,23E-03	3,23E-04	5,29E-04	6,18E-05	2,50E-04	-2,03E-04		
AP	kg SO ₂ -eq	6,64E-01	6,64E-03	5,97E-02	6,28E-02	3,10E-03	7,85E-03	1,05E-03	2,96E-03	-2,38E-03		
EP	kg PO ₄ ³⁻ -eq	9,34E-02	7,09E-04	4,45E-03	6,71E-03	3,44E-04	8,39E-04	1,38E-04	3,49E-04	-2,79E-04		
ADPM	kg Sb -eq	5,19E-04	9,16E-05	5,42E-05	8,67E-04	3,25E-06	1,08E-04	3,58E-06	9,79E-06	-8,08E-05		
ADPE	MJ	1,62E+03	4,99E+01	1,05E+02	4,73E+02	2,90E+01	6,03E+01	3,37E+00	2,87E+01	-1,54E+01		
GWPIOBC	kg CO ₂ -eq	4,10E+01	3,38E+00	8,76E+00	3,20E+01	2,84E+03	3,98E+00	0,00E+00	0,00E+00	-9,74E-01		

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources; GWP-IOBC/GHG Global warming potential calculated according to the principle of instantanious oxidation (except emissions and uptake of biogenic carbon)

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21

Iversen et al., (2018) EPD generator for Leca - Background information for customer application, LCA.no report number 06.18

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

© epd-norway	Program operator and publisher	Phone:	+47 23 08 80 00
epu-norway	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
- (0	Owner of the declaration:	Phone:	+47 41 43 71 00
DLeca	Leca International	e-mail:	info@leca.no
SAINT-GOBAIN	Årnesvegen 1, 2009 Nordby	web:	www.leca.no
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
	Dokka 6B, 1671	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
	Dokka 6B,1671 Kråkerøy	web:	www.lca.no
SCO PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal
VEXIFIED			