
Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Scala XL Convex 1150x2300x90 Single

abstracta

The Norwegian EPD Foundation

Owner of the declaration:

Abstracta AB

Product:

Scala XL Convex 1150x2300x90 Single

Declared unit:

1 pcs

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 026:2022 Part B for Furniture

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-4655-3949-EN

Registration number:

NEPD-4655-3949-EN

Issue date: 11.07.2023

Valid to: 11.07.2028

EPD Software:

LCA.no EPD generator ID: 64854

General information

Product

Scala XL Convex 1150x2300x90 Single

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00

web: post@epd-norge.no

Declaration number: NEPD-4655-3949-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012 + A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs Scala XL Convex 1150x2300x90 Single

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,B2,B3,B4,C1,C2,C3,C4,D

Functional unit:

The product hangs on the wall until its end-of-life, after which it can be dismantled and recycled or returned to Abstracta for reuse or recycling.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i integrated into the company's environmental management system, ii the procedures for use of the EPD tool are approved by EPD-Norway, and iii the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects (no signature required

Owner of the declaration:

Abstracta AB

Contact person: Tim Wisme

Phone:

e-mail: tim.wisme@abstracta.se

Manufacturer:

Abstracta AB

Place of production:

Abstracta AB Lammengatan 2 363 45 Lammhult, Sweden

Management system:

ISO 9001, 14001 och 45001

Organisation no:

556046-3852

Issue date: 11.07.2023

Valid to: 11.07.2028

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Tim Wisme

Reviewer of company-specific input data and EPD: Erik Graesen

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Scala XL is an acoustic panel that is mounted on the wall. The design of the sound-absorbent Scala XL is not only developed for visual reasons, but primarily to contribute to a softer soundscape. Scala XL is available in different sizes, both as a convex and a concave design. To be hung on hidden wall brackets. For more information about the product, visit the product page https://abstracta.se/product/scala-xl/.

Product specification

The modules are made from compressed polyester with or without fabric. It is hung on the wall with concealed aluminium and steel brackets.

Materials	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Powder coating	0,05	0,51	0,00	0,00
Filt	7,37	78,23	0,00	0,00
Metal - Stainless steel	0,04	0,38	0,01	21,83
Metal - Aluminium	0,72	7,64	0,00	0,00
Metal - Steel	1,25	13,24	0,00	0,00
Total	9,42		0,01	

Packaging	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Recycled cardboard	2,59	74,99	2,59	100,00
Packaging - Cardboard	0,86	25,01	0,00	0,00
Total incl. packaging	12,87		2,59	

Technical data:

The dimensions of Scala XL 190 552 00 are 1150x2300x90, but other sizes are also available. This EPD is made for a Scala XL without fabric, but with fabric is also available. Note that adding this, changes the environmental impact of the product.

For more information on the technical data of Scala XL, see the technical data sheet: https://www.dropbox.com/s/5corqvq6d60hydq/Scala%20XL%20Technical%20Data%20Sheet.pdf?dl=0.

Market:

Available worldwide.

Reference service life, product

10 years

Reference service life, building

60 years

LCA: Calculation rules

Declared unit:

1 pcs Scala XL Convex 1150x2300x90 Single

Cut-off criteria:

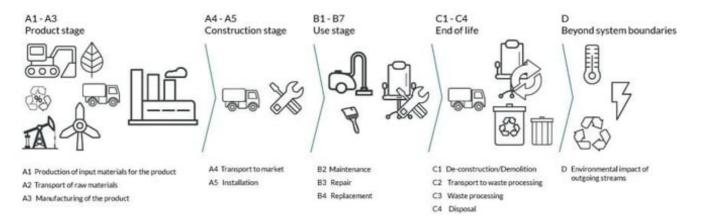
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Metal - Aluminium	ecoinvent 3.6	database	2019
Metal - Stainless steel	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Powder coating	Ecoinvent 3.6	Database	2019
Packaging - Cardboard	Modified ecoinvent 3.6	Database	2019
Recycled cardboard	Modified ecoinvent 3.6	Database	2019
Filt	S-P-04908	EPD	2020

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	roduct stag	ge		uction on stage		Use stage End of life stage				Beyond the system boundaries						
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurb ishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Χ	X	Χ	Χ	Χ	MNR	X	Χ	Χ	MNR	MNR	MNR	Χ	Χ	X	Χ	X

System boundary:

The analysis is a cradle-to-grave, A1-D, where some B-stages (use phase) that were assumed to be neglectable are not included. The A1-A4 stages includes the extraction and production of raw materials, transportation to the production site, the production process itself and an estimated transport distance to the market. A5 includes the generated waste from the packaging of the product after assembly at the customer. The only B stage that is assumed to be relevant is B2, which includes assumptions on how the customer takes care of the product according to Abstracta's care instructions. The C and D stages includes the use of materials and energy for deconstruction, the transport to waste management, the waste processes, disposal of materials that cannot be processed, and the potential of reuse, recovery, and recycling of the product.

Additional technical information:

To preserve the fabric colour and the appearance of the fabric, Scala should be vacuumed regularly with a soft nozzle.

Polyester Stain Removal: Use uncoloured paper towel or cloth to soak up as much as possible of the stain. Dried stains should be vacuumed. Moisten the stain lightly with a clean white cotton cloth, lukewarm water and possibly a small amount of pH-neutral detergent. Press a dry cloth or uncoloured paper towel against the fabric so that moisture and dirt are absorbed. Repeat moistening and soaking until the stain is gone. Use clean water without detergent at the last moistening. Finish with soaking.

Wool Stain Removal: Dab or wipe gently with a moist cloth.

Abstracta offers a take-back scheme for used products that our customers want to recycle. We can then reuse the components in the best, possible way. In this way, we can save some of the world's resources by reusing or refurbishing some products to avoid throwing away fully functional material or products. In cases where this is not possible, we instead recycle the materials. Read more about this here https://abstracta.is-introducing-a-new-recycling-service-for-used-products-abstracta/. Otherwise, try to ensure that the product can be reused when possible, or else, dismantle it so that as much of the materials can be recycled as possible.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Some assumptions have been made regarding the products lifetime after leaving the factory gates. The product is assumed to be transported to a customer in Scandinavia, the UK or France (about 85% of sales in 2022). An average distance to the customer has been calculated through this data. In the construction phase (A5), the packaging of the product becomes waste, and the impacts were added automatically according to assumptions made in the EPD tool on waste handling by the customer or installer of the product. In the use stage the assumption is that the customer takes care of the product by vacuuming it on a yearly basis. For the end-of-life stage of the product, it has been assumed that there is 50 km from the customer to the waste terminal. The rest of the values for this stage are automatically filled in by the tool, according to other assumptions of disposal and waste processes. For the D-stage, where negative impacts from recycling and heat generation from waste incineration are added, automatic values are filled in, according to generic data.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Ship, Ferry, Sea (km)	50,0 %	7	0,034	l/tkm	0,24
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	511	0,043	l/tkm	21,96
Assembly (A5)	Unit	Value			
Waste, packaging, cardboard, 100 % recycled, to average treatment (kg)	kg	2,59			
Waste, packaging, corrugated board box, 0 % recycled, to average treatment (kg)	kg	0,86			
Maintenance (B2)	Unit	Value			
Electricity, Sweden (kWh)	kWh/DU	0,25			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	50	0,043	l/tkm	2,15
Waste processing (C3)	Unit	Value			
Waste treatment per kg Non-hazardous waste, incineration with fly ash extraction - C3 (kg)	kg	0,05			
Waste treatment per kg Polyethylene terephthalate, PET, incineration with fly ash extraction - C3 (kg)	kg	7,37			
Waste treatment per kg Scrap aluminium, incineration with fly ash extraction (kg)	kg	0,72			
Waste treatment per kg Scrap steel, incineration with fly ash extraction (kg)	kg	1,28			
Waste, materials to recycling (kg)	kg	0,51			
Disposal (C4)	Unit	Value			
Landfilling of ashes and residues from incineration of Scrap aluminium (kg)	kg	0,65			
Landfilling of ashes and residues from incineration of Scrap steel (kg)	kg	0,85			
Landfilling of ashes from incineration of Non- hazardous waste, process per kg ashes and residues - C4 (kg)	kg	0,01			
Landfilling of ashes from incineration of Polyethylene terephthalate, PET, process per kg ashes and residues - C4 (kg)	kg	0,16			
Benefits and loads beyond the system boundaries (D)	Unit	Value			_
Substitution of electricity, in Norway (MJ)	МЈ	7,77			
Substitution of primary aluminium with net scrap (kg)	kg	0,07			
Substitution of primary steel with net scrap (kg)	kg	0,43			
Substitution of thermal energy, district heating, in Norway (MJ)	МЈ	117,61			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environme	ental impact							
	Indicator	ι	Init	A1-A3	A4	A5	B2	В3
	GWP-total	kg C	O ₂ -eq	2,20E+01	1,08E+00	5,91E+00	1,37E-02	0
	GWP-fossil	kg C	kg CO ₂ -eq		1,08E+00	5,58E-02	1,27E-02	0
	GWP-biogenic	kg C	O ₂ -eq	-4,91E+00	4,47E-04	5,86E+00	2,57E-04	0
	GWP-luluc	kg C	O ₂ -eq	1,74E-01	3,89E-04	1,85E-05	8,22E-04	0
Ü	ODP	kg CF	C11 -eq	3,27E-05	2,45E-07	1,18E-08	6,21E-09	0
Œ	АР	mol	H+ -eq	1,48E-01	3,42E-03	2,64E-04	8,24E-05	0
	EP-FreshWater	kg	P -eq	4,39E-03	8,62E-06	4,58E-07	8,56E-07	0
	EP-Marine	kg	N -eq	3,21E-02	6,94E-04	8,74E-05	1,40E-05	0
-	EP-Terrestial	mol	N -eq	3,20E-01	7,76E-03	9,46E-04	1,85E-04	0
	POCP	kg NM	IVOC -eq	1,25E-01	2,86E-03	2,72E-04	4,21E-05	0
	ADP-minerals&metals ¹	kg :	Sb -eq	2,59E-04	2,97E-05	1,36E-06	5,06E-07	0
	ADP-fossil ¹		МЈ		1,64E+01	7,81E-01	1,48E+00	0
<u>%</u>	WDP ¹		m ³	6,14E+03	1,57E+01	9,90E-01	1,50E+02	0
	Indicator	Unit	B4	C1	C2	C3	C4	D
	GWP-total	kg CO ₂ -eq	0	0	1,05E-01	1,53E+01	2,51E-02	-1,86E+00
	GWP-fossil	kg CO ₂ -eq	0	0	1,05E-01	1,53E+01	2,51E-02	-1,82E+00
	GWP-biogenic	kg CO ₂ -eq	0	0	4,35E-05	3,17E-04	1,69E-05	-4,72E-03
	GWP-luluc	kg CO ₂ -eq	0	0	3,74E-05	2,62E-05	6,33E-06	-3,63E-02
Ô	ODP	kg CFC11 -eq	0	0	2,38E-08	1,77E-08	6,07E-09	-4,97E-02
Œ	АР	mol H+ -eq	0	0	3,02E-04	3,02E-03	1,48E-04	-1,25E-02
-	EP-FreshWater	kg P -eq	0	0	8,40E-07	1,89E-06	2,80E-07	-1,16E-04
	EP-Marine	kg N -eq	0	0	5,98E-05	1,57E-03	5,13E-05	-2,89E-03
	EP-Terrestial	mol N -eq	0	0	6,69E-04	1,59E-02	5,70E-04	-3,11E-02
	POCP	kg NMVOC -eq	0	0	2,56E-04	3,83E-03	1,63E-04	-9,97E-03
	ADP-minerals&metals ¹	kg Sb -eq	0	0	2,90E-06	7,43E-07	3,36E-07	-1,40E-05
F	ADP-fossil ¹	MJ	0	0	1,59E+00	1,58E+00	4,58E-01	-2,22E+01

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

abstracta

Additional er	vironmental impac	t indicators						
	Indicator	Unit		A1-A3	A4	A5	B2	В3
	PM	Disease incidence		2,04E-06	6,60E-08	3,90E-09	5,94E-10	0
(m) R	IRP ²	kgBq U235 -eq		3,28E+00	7,15E-02	3,34E-03	5,08E-02	0
	ETP-fw ¹	CTUe		9,27E+02	1,21E+01	1,04E+00	7,83E-01	0
46. *** 2	HTP-c ¹	CTUh		5,61E-08	0,00E+00	3,10E-11	2,30E-11	0
48° B	HTP-nc ¹	CTUh	CTUh		1,32E-08	1,31E-09	5,42E-10	0
	SQP ¹	dimensionless		4,87E+02	1,14E+01	5,24E-01	6,57E-01	0
I	ndicator	Unit	B4	C1	C2	C3	C4	D
	PM	Disease incidence	0	0	6,44E-09	1,88E-08	2,53E-09	-4,26E-07
	IRP ²	kgBq U235 -eq	0	0	6,95E-03	2,58E-03	1,89E-03	-9,73E-02
4	ETP-fw ¹	CTUe	0	0	1,18E+00	7,25E+00	3,66E-01	-8,96E+01
44.	HTP-c ¹	CTUh	0	0	0,00E+00	5,12E-10	1,50E-11	-4,94E-09
* <u>B</u>	HTP-nc ¹	CTUh	0	0	1,29E-09	2,34E-08	4,75E-10	-2,06E-08

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

1,11E+00

1,90E-01

1,05E+00

-6,56E+01

dimensionless

SQP¹

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

abstracta

Resource use									
	Indicator		U	nit	A1-A3	A4	A5	B2	В3
	PERE		MJ		1,13E+02	2,33E-01	1,29E-02	7,13E-01	0
	PERM	PERM		۷J	5,41E+01	0,00E+00	-2,89E+01	0,00E+00	0
F.	PERT		N	ΛJ	1,67E+02	2,33E-01	-2,89E+01	7,13E-01	0
	PENRE		N	۷J	3,29E+02	1,64E+01	7,81E-01	1,49E+00	0
49	PENRM		N	NJ	1,48E+02	0,00E+00	0,00E+00	0,00E+00	0
IA	PENRT		N	NJ	4,78E+02	1,64E+01	7,81E-01	1,49E+00	0
	SM		k	g	2,59E+00	0,00E+00	0,00E+00	0,00E+00	0
2	RSF		N	۷J	4,02E-01	8,34E-03	4,26E-04	2,76E-03	0
	NRSF		MJ		2,14E-01	2,97E-02	1,76E-03	8,73E-03	0
&	FW		n	n ³	3,50E-01	1,74E-03	3,68E-04	1,62E-03	0
	ndicator	U	nit	B4	C1	C2	C3	C4	D
Ţ.	PERE	N	MJ	0	0	2,28E-02	4,26E-02	1,15E-02	-6,36E+01
A	PERM	N	MJ	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	PERT	N	ΜJ	0	0	2,28E-02	4,26E-02	1,15E-02	-6,36E+01
	PENRE	N	ΜJ	0	0	1,59E+00	1,59E+00	4,58E-01	-2,22E+01
Å	PENRM	N	MJ	0	0	0,00E+00	-1,48E+02	0,00E+00	0,00E+00
IA.	PENRT	N	ΜJ	0	0	1,59E+00	-1,47E+02	4,58E-01	-2,22E+01
	SM	k	kg	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
2	RSF	N	ΜJ	0	0	8,14E-04	1,13E-03	2,99E-04	5,41E-03
	NRSF	N	ΜJ	0	0	2,91E-03	0,00E+00	3,41E-02	-3,07E+00
&	FW	n	m ³	0	0	1,70E-04	2,99E-03	4,15E-04	-9,02E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

abstracta

End of life - Waste									
	Indicator		Uı	nit	A1-A3	A4	A5	B2	В3
	HWD		k	g	1,75E-01	8,43E-04	0,00E+00	7,76E-05	0
	Ū NHWD		kg		4,18E+00	7,90E-01	3,45E+00	4,90E-03	0
<u>.</u>	RWD		kg		1,40E-03	1,12E-04	0,00E+00	2,24E-05	0
In	dicator		Unit	B4	C1	C2	C3	C4	D
	HWD		kg	0	0	8,20E-05	0,00E+00	1,64E+00	-1,37E-04
Ū	NHWD		kg	0	0	7,73E-02	4,80E-02	8,55E-02	-6,18E-01
₩	RWD		kg	0	0	1,08E-05	0,00E+00	2,82E-06	-8,42E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow								
Ind	icator	Un	it	A1-A3	A4	A5	B2	В3
®▷	CRU	kç	ı	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0
&▷	MFR	kç	ı	1,23E-01	0,00E+00	3,21E+00	0,00E+00	0
DF	MER	kç	ı	3,15E-06	0,00E+00	4,70E-06	0,00E+00	0
50	EEE	М	МЈ		0,00E+00	1,97E-01	0,00E+00	0
DB.	EET	М	J	4,09E+00	0,00E+00	2,99E+00	0,00E+00	0
Indicato	or	Unit	B4	C1	C2	C3	C4	D
Ø▷	CRU	kg	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
\$>	MFR	kg	0	0	0,00E+00	5,10E-01	0,00E+00	0,00E+00
DV	MER	kg	0	0	0,00E+00	9,42E+00	0,00E+00	0,00E+00
50	EEE	МЈ	0	0	0,00E+00	7,81E+00	0,00E+00	0,00E+00
	EET	MJ	0	0	0,00E+00	1,18E+02	0,00E+00	0,00E+00

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content									
Unit	At the factory gate								
kg C	1,20E+00								
kg C	8,42E-01								
	kg C								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Sweden (kWh)	ecoinvent 3.6	54,94	g CO2-eg/kWh

Dangerous substances

No substances given by the REACH Candidate list or the Norwegian priority list are intentionally added to the product.

Indoor environment

A test report for the indoor emissions has been done by RISE and can be seen here: https://www.dropbox.com/s/6c5rkpfr9vroqb6/8F025145-Abstracta%20Indoor%20emissions%2C%20Scala.pdf?dl=0

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products							
Indicator	Unit	Unit		A4	A5	B2	В3
GWPIOBC	kg CO ₂ -eq	kg CO ₂ -eq		1,08E+00	0,00E+00	1,37E-02	0
Indicator	Unit	B4	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	0	0	1,05E-01	1,53E+01	1,86E-02	-2,06E+00

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Variants and Options

Key environmental indicators (A1-A3) for variants of this EPD					
Variants	Weight (kg)	GWPtotal (kg CO ₂ -eq)	Total energy consumption (MJ)	Amount of recycled materials (%)	
Scala XL Concave 855x1600x90 Middle	6,71	10,08	242,41	26,81	
Scala XL Concave 1002x1600x90 Right	7,37	11,36	256,25	24,43	
Scala XL Concave 1150x2300x90 Single	11,59	18,48	394,43	22,34	
Scala XL Convex 1150x1600x90 Single	8,88	14,97	302,69	20,30	
Scala XL Concave 1150x1600x90 Single	8,03	12,65	270,23	22,43	
Scala XL Concave 855x2300x90 Middle	9,68	14,75	354,01	26,74	
Scala XL Concave 1002x1600x90 Left	7,37	11,36	256,25	24,43	
Scala XL Concave 1002x2300x90 Left	10,62	16,59	373,94	24,38	
Scala XL Concave 1002x2300x90 Right	10,62	16,59	373,94	24,38	

Key Environmental Indicators

Indicator	Unit	A1-A3	A4	A1-C4	A1-D
GWPtotal	kg CO ₂ -eq	21,95	1,08	44,41	42,55
Total energy consumption	MJ	443,13	16,64	466,53	377,67
Amount of recycled materials	%	16,36			

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Ruud et al., (2023) EPD generator for NPCR026 Part B for Furniture - Background information for EPD generator application and LCA data, LCA.no report number 01.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

NPCR 026 Part B for Furniture. Ver. 2.0 March 2022, EPD-Norge.

@ and narway	Program operator and publisher	Phone: +47 23 08 80 00
🏻 🌑 epd-norway	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
	Owner of the declaration:	Phone:
abstracta	Abstracta AB	e-mail: tim.wisme@abstracta.se
	Lammengatan 2, 363 45 Lammhult	web: www.abstracta.se
	Author of the Life Cycle Assessment	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
	Dokka 6B, 1671	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
no.no	Dokka 6B,1671 Kråkerøy	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
VERIFIED	ECO Portal	web: ECO Portal