

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

A25-S280 1100 HF

Owner of the declaration:

Glamox AS

Product:

A25-S280 1100 HF

Declared unit:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

IBU PCR - Part B for luminaires, lamps, and components for luminaires

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-4707-3964-EN

Registration number:

NEPD-4707-3964-EN

Issue date: 11.07.2023

Valid to: 11.07.2028

EPD Software:

LCA.no EPD generator ID: 63565

The Norwegian EPD Foundation

General information

Product

A25-S280 1100 HF

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number: NEPD-4707-3964-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012 + A2:2019 serves as core PCR IBU PCR - Part B for luminaires, lamps, and components for luminaires

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs A25-S280 1100 HF

Declared unit with option:

A1,A2,A3,A4,A5,B6,C1,C2,C3,C4,D

Functional unit:

1 pc A25-S280 luminaire manufactured in Glamox Keila. Transport to customer, installed and used according to a specific lighting regime over 15-years lifetime. Including waste treatment at end-of-life.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i integrated into the company's environmental management system, ii the procedures for use of the EPD tool are approved by EPD-Norway, and iii the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT41.

Third party verifier:

Owner of the declaration:

Glamox AS

Contact person: Birger Holo Phone: +47 97551574 e-mail: birger.holo@glamox.com

Manufacturer:

Glamox AS Birger Hatlebakks veg 15 6415 Molde, Norway

Place of production:

Glamox production site Keila (Estonia Keki 2 76606 Keila, Estonia

Management system:

Factory Molde: ISO 9001, ISO 14001, ATEX, ISO 80079-34 (IECEx Factory Kirkenær: ISO 9001, ISO 14001, ISO 13485; Factory Keila: ISO 9001, ISO 14001, ISO 45001, ISO 50001.

Organisation no:

912007782

Issue date: 11.07.2023

Valid to: 11.07.2028

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2021.09, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. NEPDT42

Developer of EPD: Tiiu Paavel

Reviewer of company-specific input data and EPD: Sergei Tatarlo

Approved:

Håkon Hauan

Managing Director of EPD-Norway

Product

Product description:

Glamox A25-S is a surface mounted luminaire with a simple, timeless design. From the front it's a perfect circle, in profile the body and the diffuser are joined smoothly together in the same plane, forming a modified super ellipse.

This environmental product declaration can be used for the following luminaires:

A25538801- A25-S280 1100 HF 830

A25538802- A25-S280 1100 HF 840

Product specification

Materials	kg	%
Tape	0,00	0,02
Electronic - Cable	0,03	2,53
Electronic - LED driver	0,11	10,71
Electronic - Connector	0,01	0,88
Metal - Galvanized Steel	0,01	1,17
Metal - Aluminium	0,25	23,96
Electronic - LED chip	0,00	0,14
Metal - Steel	0,01	0,81
Electronic - LED plate	0,08	8,04
Plastic - Polyamide	0,00	0,19
Electronic - Resistor	0,00	0,10
Thermoplastic elastomers (TPE)	0,01	0,51
Electronic - Wire	0,00	0,39
Plastic - Polycarbonate (PC)	0,52	50,55
Total	1,03	
Packaging	kg	%
Packaging - Cardboard	0,19	81,36
Packaging - Paper	0,04	18,64
Total incl. packaging	1,26	

Technical data:

Please visit the product page on our website for more technical information. https://www.glamox.com/en/pbs/products/indoor/panels-troffers/surface-ceiling/a25-s/

Market:

Nordic

Reference service life, product

15 years lifetime for the installation according to the used scenario.

Reference service life, building or construction works

60 years. Standard service life for buildings according to PCR Part A of EPD Norway.

LCA: Calculation rules

Declared unit:

1 pcs A25-S280 1100 HF

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) can be excluded. These cut-off criteria do not apply for hazardous materials and substances.

Allocation

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

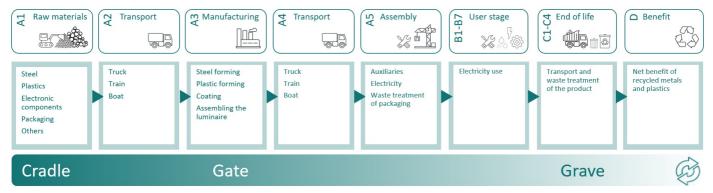
Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Electronic - Connector	ecoinvent 3.6	Database	2019
Electronic - LED plate	ecoinvent 3.6	Database	2019
Electronic - Resistor	ecoinvent 3.6	Database	2019
Metal - Aluminium	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Packaging - Cardboard	ecoinvent 3.6	Database	2019
Packaging - Paper	ecoinvent 3.6	Database	2019
Plastic - Polyamide	ecoinvent 3.6	Database	2019
Plastic - Polycarbonate (PC)	ecoinvent 3.6	Database	2019
Tape	ecoinvent 3.6	Database	2019
Thermoplastic elastomers (TPE)	ecoinvent 3.6	Database	2019
Electronic - Wire	Material composition + ecoinvent 3.6	Supplier data + database	2019
Electronic - Cable	Product composition + ecoinvent 3.6	Supplier data + database	2019
Electronic - LED driver	Product composition + ecoinvent 3.6	Supplier data + database	2019
Metal - Galvanized Steel	S-P-06911	EPD	2021
Electronic - LED chip	Scholand et al. (2012) + Ecoinvent 3.6	Scientific literature + database	2017

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	P	roduct stag	je		uction ion stage				Use stage					End of I	ife stage		Beyond the system boundaries
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	naw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
	Χ	Х	Х	X	X	MND	MND	MND	MND	MND	Х	MND	Х	Х	Х	Χ	X

System boundary:


The analysis is a cradle-to-grave study of one luminaire manufactured and installed, used according to a specific lighting regime over a specific lifetime, including waste treatment at end-of-life.

A1-A5 includes the extraction and production of raw materials, transportation to the production site, the production process itself, transport to the market and assembly.

B6 is the operational energy use stage of the luminaire based on a scenario.

C1-C4 includes de-installation of the luminaire, average transport between building site and waste treatment facility, waste processing and disposal. Waste treatment of the product follows the default values provided in EN 50693.

D shows the recyclability of metals and plastics, and allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastic insulation and other parts is also calculated in module D.

Additional technical information:

Please visit our website www.glamox.com for more technical information.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Module A4 = Transport from manufacturing location in Keila to warehouse in Oslo (900 km) + average distribution into the Nordic market (300 km)

Module B6 = The operational energy use of the luminaire is calculated based on the methodology provided in IBU PCR Part B for luminaires, lamps, and components for luminaires. The energy consumption model for luminaire used in the PCR follows the application scenarios developed in EN 15193:2007. To calculate the electricity use of the luminaire, the following scenario parameters have been applied:

- User scenario = Office
- Active power of the luminaire (Pa) = 9 watt
- Passive power of the luminaire (Pp) = 0 watt
- Daylight time usage (tD) = 2250 hours
- Non-daylight time usage (tN) = 250 hours
- Standard year time (ty) = 8760 hours
- The occupancy dependency factor (FO) = 1 (factor, no unit)
- The daylight dependency factor (FD) = 1 (factor, no unit)
- The product specific constant illuminance factor (FCP) = 1 (factor, no unit)
- The non-daylight dimming factor (FN) = 1 (factor, no unit)
- The application specific empiric lifetime of the luminaire in years (a) = 15 years (corresponding to the reference service life of the product).

Module C2 = Average transport to Nordic waste treatment facilities (300 km).

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with and without energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals, plastics, and electronic components allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastic insulation and other parts is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Ship, Ferry, Sea (km)	50,0 %	285	0,034	l/tkm	9,69
Truck, 16-32 tonnes, EURO 5 (km) - Europe	36,7 %	915	0,044	l/tkm	40,26
Assembly (A5)	Unit	Value			
Waste, cardboard and paper, to average treatment - A5 including transport (kg)	kg	0,24			
Operational energy (B6)	Unit	Value			
Electricity, Nordic (kWh)	kWh/DU	337,50			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (km) - Europe	36,7 %	300	0,044	l/tkm	13,20
Waste processing (C3)	Unit	Value			
Aluminium to recycling (kg)	kg	0,17			
Copper to recycling (kg)	kg	0,01			
Steel to recycling (kg)	kg	0,02			
Waste treatment of plastic mixture, incineration with energy recovery and fly ash extraction (kg)	kg	0,30			
Waste treatment per kg electronics scrap from LED plate, without components, recycling of copper - C3 (kg)	kg	0,04			
Waste treatment per kg electronics scrap from PWB, with components, recycling of metals - C3 (kg)	kg	0,04			
Waste treatment per kg used electronic components, manual seperation (kg)	kg	0,15			
Waste treatment per kg used PWB, shredding and separation - C3 (kg)	kg	0,15			

Disposal (C4)	Unit	Value		
Landfilling of aluminium (kg)	kg	0,07		
Landfilling of ashes from incineration of Plastic mixture, process per kg ashes and residues (kg)	kg	0,01		
Landfilling of copper (kg)	kg	0,00		
Landfilling of hazardous waste (kg)	kg	0,08		
Landfilling of plastic mixture (kg)	kg	0,30		
Landfilling of steel (kg)	kg	0,00		

Benefits and loads beyond the system boundaries (D)	Unit	Value		
Substitution of copper with net scrap from PWB, without components (kg)	kg	0,00		
Substitution of electricity, in Norway (MJ)	MJ	0,46		
Substitution of primary aluminium with net scrap (kg)	kg	0,17		
Substitution of primary copper with net scrap (kg)	kg	0,00		
Substitution of primary metals with net scrap from PWB, with components (kg)	kg	0,01		
Substitution of primary steel with net scrap (kg)	kg	0,01		
Substitution of thermal energy, district heating, in Norway (MJ)	МЈ	6,91		

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

_			1 3						
Environme	ental impact		11-2		۸.1	Λ2	A 2	۸.4	٨٢
	Indicator GWP-total		Unit kg CO ₂ -€	eq	A1 2,60E+01	A2 1,62E-01	A3 1,07E-01	A4 2,32E-01	A5 4,06E-01
	GWP-fossil		kg CO ₂ -eq		2,62E+01	1,62E-01	1,03E-01	2,32E-01	3,82E-03
	GWP-biogenic		kg CO ₂ -eq		-3,08E-01	6,26E-05	3,28E-03	8,86E-05	4,02E-01
	GWP-luluc		kg CO ₂ -e		1,26E-01	6,33E-05	2,87E-04	9,17E-05	1,26E-06
Ġ	ODP		kg CFC11		1,89E-06	3,63E-08	1,60E-08	5,17E-08	8,06E-10
	AP		mol H+ -		1,91E-01	1,34E-03	8,82E-04	2,08E-03	1,81E-05
	EP-FreshWater		kg P -ec		3,39E-03	1,18E-06	2,83E-06	1,66E-06	3,13E-08
	EP-Marine		kg N -ed		2,53E-02	3,59E-04	2,55E-04	5,55E-04	5,98E-06
	EP-Terrestial		mol N -e		2,89E-01	3,99E-03	4,06E-03	6,16E-03	6,47E-05
	POCP		kg NMVOC		9,30E-02	1,12E-03	7,45E-04	1,72E-03	1,86E-05
	ADP-minerals&metals ¹		kg Sb -e		3,04E-03	3,91E-06	7,91E-07	5,47E-06	9,29E-08
	ADP-fossil ¹		MJ		3,36E+02	2,39E+00	1,27E+00	3,40E+00	5,34E-02
<u></u>	WDP ¹		m ³		2,45E+03	2,05E+00	3,10E+02	2,86E+00	6,77E-02
				D.C	C1	62	63	C1	-
	Indicator GWP-total		Unit kg CO ₂ -eq	B6 4,92E+01	C1 0,00E+00	C2 6,31E-02	C3 7,45E-01	C4 5,22E-02	-2,19E+00
	GWP-fossil		kg CO ₂ -eq	4,58E+01	0,00E+00	6,30E-02	7,45E-01	5,20E-02	-2,15E+00
	GWP-biogenic		kg CO ₂ -eq	8,37E-01	0,00E+00	2,57E-05	9,58E-05	1,79E-05	-8,66E-03
	GWP-luluc		kg CO ₂ -eq	2,51E+00	0,00E+00	2,20E-05	1,25E-04	1,51E-04	-3,03E-02
©	ODP	ı	kg CFC11 -eq	4,96E-06	0,00E+00	1,44E-08	4,05E-09	2,11E-09	-2,92E-03
	АР		mol H+ -eq	2,11E-01	0,00E+00	2,58E-04	3,15E-04	1,11E-04	-5,21E-02
-	EP-FreshWater		kg P -eq	3,03E-03	0,00E+00	4,95E-07	1,41E-06	8,07E-07	-2,98E-04
	EP-Marine		kg N -eq	3,34E-02	0,00E+00	7,64E-05	1,03E-04	6,28E-05	-3,47E-03
	EP-Terrestial		mol N -eq	4,48E-01	0,00E+00	8,45E-04	1,08E-03	2,99E-04	-4,42E-02
	POCP	k	g NMVOC -eq	1,05E-01	0,00E+00	2,59E-04	2,75E-04	1,28E-04	-1,33E-02
#-H	ADP-minerals&metals ¹		kg Sb -eq	7,13E-04	0,00E+00	1,71E-06	3,88E-07	1,29E-07	-9,17E-04
	ADP-fossil ¹		MJ	1,24E+03	0,00E+00	9,50E-01	4,98E-01	2,81E-01	-2,75E+01
<u>%</u>	WDP ¹		m^3	9,57E+04	0,00E+00	9,06E-01	4,68E+00	1,41E+00	-8,68E+02

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

A luminaire is a product that consumes energy during the use phase. Combined with a relatively long expected lifetime and the environmental impact of generating electricity, the use phase (B6) will normally be the most contributing stage to the overall environmental impact of the declared unit. It is important to be aware that the actual calculations of the effect of B6 is particularly sensitive to which use scenario that is chosen and which energy grid mix that is used.

Additional e	nvironmental impa	ct indicators						
	Indicator	Unit		A1	A2	A3	A4	A5
	PM	Disease incidence		1,47E-06	1,05E-08	1,14E-08	1,49E-08	2,66E-10
	IRP ²	kgBq U235 -eq		1,27E+00	1,04E-02	1,93E-03	1,48E-02	2,29E-04
	ETP-fw ¹	CTUe		1,43E+03	1,71E+00	7,60E+00	2,42E+00	7,12E-02
44.	HTP-c ¹ CTUh		3,18E-08	0,00E+00	1,14E-10	0,00E+00	2,00E-12	
48	HTP-nc ¹	CTUh		1,25E-06	1,83E-09	2,80E-09	2,67E-09	9,00E-11
	SQP ¹	dimensionless		7,99E+01	1,48E+00	2,98E+01	2,06E+00	3,58E-02
I	ndicator	Unit	В6	C1	C2	C3	C4	D
	PM	Disease incidence	1,12E-06	0,00E+00	4,54E-09	1,78E-09	2,07E-09	-2,07E-07
	IRP ²	kgBq U235 -eq	2,82E+01	0,00E+00	4,15E-03	2,35E-03	7,86E-04	-1,15E-01
	ETP-fw ¹	CTUe	1,55E+03	0,00E+00	7,00E-01	2,21E+00	5,10E+01	-3,32E+02
44. ** <u>*</u>	HTP-c ¹	CTUh	3,61E-08	0,00E+00	0,00E+00	6,97E-10	7,90E-11	-5,62E-09
₩ <u></u>	HTP-nc ¹	CTUh	9,51E-07	0,00E+00	7,56E-10	4,05E-08	6,20E-10	-1,78E-07
	SQP ¹	dimensionless	9,33E+02	0,00E+00	6,55E-01	1,11E-01	7,79E-01	-1,02E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	Indicator		U	nit	A1	A2	А3	A4	A5
	PERE		MJ		4,96E+01	3,14E-02	7,46E+00	4,41E-02	8,79E-04
	PERM		1	ΜJ	2,20E+00	0,00E+00	0,00E+00	0,00E+00	-3,26E+00
Ţ,	PERT		1	MJ	5,18E+01	3,14E-02	7,46E+00	4,41E-02	-3,26E+00
	PENRE		1	MJ	3,33E+02	2,39E+00	1,27E+00	3,40E+00	5,34E-02
42	PENRM	М		MJ	1,64E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00
IA	PENRT		1	MJ	3,36E+02	2,39E+00	1,27E+00	3,40E+00	5,34E-02
<u></u>	SM		I	kg	1,70E-01	0,00E+00	1,40E-06	0,00E+00	0,00E+00
	RSF		1	MJ	2,87E-01	1,10E-03	1,86E-02	1,54E-03	2,92E-05
	NRSF		1	MJ	3,09E-02	3,89E-03	3,02E-03	5,23E-03	1,20E-04
6 6	FW		r	m ³	3,84E-01	2,35E-04	1,83E-04	3,29E-04	2,52E-05
	ndicator	ı	Unit	В6	C1	C2	C3	C4	D
	PERE		MJ	1,22E+03	0,00E+00	1,34E-02	7,21E-02	7,24E-02	-1,11E+01
	PERM		MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Ŧ.	PERT		MJ	1,22E+03	0,00E+00	1,34E-02	7,21E-02	7,24E-02	-1,11E+01
	PENRE		MJ	1,26E+03	0,00E+00	9,50E-01	4,99E-01	2,82E-01	-2,75E+01
Å	PENRM		MJ	0,00E+00	0,00E+00	0,00E+00	-1,72E+01	0,00E+00	0,00E+00
īĀ.	PENRT		MJ	1,26E+03	0,00E+00	9,50E-01	-1,67E+01	2,82E-01	-2,75E+01
<u></u>	SM		kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,15E-03	3,40E-03
	RSF		MJ	1,23E+01	0,00E+00	4,80E-04	1,04E-03	2,82E-04	-2,61E-03
	NRSF		MJ	0,00E+00	0,00E+00	1,71E-03	-4,10E-05	1,49E-02	-1,86E-01
8	FW		m ³	5,54E+00	0,00E+00	1,00E-04	1,15E-03	2,20E-04	-4,76E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste									
	Indicator		U	nit	A1	A2	A3	A4	A5
	HWD	HWD		kg		1,19E-04	5,52E-03	1,68E-04	0,00E+00
Ō	NHWD		k	g	3,35E+00	1,00E-01	6,42E-02	1,40E-01	2,36E-01
<u> </u>	RWD		k	g	1,05E-03	1,63E-05	2,78E-06	2,33E-05	0,00E+00
In	dicator		Unit	В6	C1	C2	C3	C4	D
ā	HWD		kg	1,16E-01	0,00E+00	4,85E-05	1,93E-05	8,27E-02	3,71E-03
Ū	NHWD		kg	7,69E+00	0,00E+00	4,54E-02	2,62E-02	3,81E-01	-5,58E-01
8	RWD		kg	1,30E-02	0,00E+00	6,48E-06	9,89E-07	6,40E-07	-1,05E-04

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow								
Ind	icator	Uni	t	A1	A2	А3	A4	A5
	CRU	kg	kg		0,00E+00	0,00E+00	0,00E+00	0,00E+00
&>	MFR	kg	kg		0,00E+00	1,01E-01	0,00E+00	2,20E-01
DF	MER	kg	kg		0,00E+00	6,83E-07	0,00E+00	1,65E-02
50	EEE	MJ	MJ		0,00E+00	2,42E-02	0,00E+00	1,35E-02
	EET	М		3,20E-05	0,00E+00	3,65E-01	0,00E+00	2,04E-01
Indicato	r	Unit	В6	C1	C2	C3	C4	D
@▷	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
\$>	MFR	kg	0,00E+00	0,00E+00	0,00E+00	1,94E-01	2,74E-05	-1,33E-04
DØ	MER	kg	0,00E+00	0,00E+00	0,00E+00	2,97E-01	1,10E-05	-1,75E-05
50	EEE	MJ	0,00E+00	0,00E+00	0,00E+00	4,57E-01	1,34E-04	-4,30E-05
D	EET	MJ	0,00E+00	0,00E+00	0,00E+00	6,91E+00	2,02E-03	-6,50E-04

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content							
Indicator	Unit	At the factory gate					
Biogenic carbon content in product	kg C	0,00E+00					
Biogenic carbon content in accompanying packaging	kg C	1,10E-01					

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, renewable with guarantee of origin, low voltage, for Keila factory, 2022 (kWh)	Mix composition + ecoinvent 3.6	41,86	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products								
Indicator	Unit		A1	A2	A3	A4	A5	
GWPIOBC	kg CO ₂ -eq		2,64E+01	1,62E-01	8,45E-02	2,32E-01	0,00E+00	
Indicator	Unit	В6	C1	C2	C3	C4	D	
GWPIOBC	kg CO ₂ -eq	6,66E+01	0,00E+00	6,31E-02	7,45E-01	2,29E-03	-2,12E+00	

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization.

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Philis et al., (2022). EPD generator for IBU PCR part B for luminaires, lamps, and components for luminaires, background information for EPD generator application and LCA data, LCA.no. Report number: 04.22. PCR verification report.

EPD Norway (2022). NPCR Part A: Construction products and services. The Norwegian EPD foundation. Version 2.0 published 24.03.2021. IBU (2017). PCR part B for luminaires, lampes and components for luminaires. Institut Bauen und Umwelt e.V. Version 1.7, published 30.11.2017.

Life cycle inventory (LCI) report for A25-S280 1100 HF, Glamox, July 2023.

and norway	Program operator and publisher	Phone:	+47 23 08 80 00
g epd-norway	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
Al/ a	Owner of the declaration:	Phone:	+47 97551574
 	Glamox AS	e-mail:	birger.holo@glamox.com
	Birger Hatlebakks veg 15, 6415 Molde	web:	https://www.glamox.com
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
	Dokka 6B, 1671	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
	Dokka 6B,1671 Kråkerøy	web:	www.lca.no
ECO PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal