

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

SteelMaster 1200WF, Jotun India Private Limited

SteelMaster

1200WF

The Norwegian EPD Foundation

Owner of the declaration: Jotun A/S

Product: SteelMaster 1200WF, Jotun India Private Limited

Declared unit: 1 kg

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR IBU PCR Part B for coatings with organic binders **Program operator:** The Norwegian EPD Foundation

Declaration number:

NEPD-4767-4022-EN

Registration number:

NEPD-4767-4022-EN

Issue date: 07.08.2023

Valid to: 07.08.2028

EPD Software: LCA.no EPD generator ID: 69188

General information

Product SteelMaster 1200WF, Jotun India Private Limited

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number: NEPD-4767-4022-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012 + A2:2019 serves as core PCR IBU PCR Part B for coatings with organic binders

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg SteelMaster 1200WF, Jotun India Private Limited

Declared unit with option:

A1,A2,A3,A4,C1,C2,C3,C4,D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification

Independent third party verification of the EPD tool, background data and test EPD in accordance with EPD Norway's procedures and guidelines for verification and approval of EPD tools. Third party verifier:

and Roming

Anne Rønning, Norsus AS

Owner of the declaration:

Jotun A/S Contact person: Cleo Alves Otterbech Phone: +47 33 45 70 00 e-mail: cleo.otterbech@jotun.no

Manufacturer:

Jotun India Private Limited

Place of production:

Jotun India Private Limited Plot D 280, Ranjangaon MIDC, Village Karegaon, Taluka Shirur 412220 Pune, Maharashtra State, India

Management system:

ISO 9001:2008 Certificate nr: 0044915-00, ISO 14001:2004 Certificate nr 0044914-00, ISO 45001: 2018 Certificate nr: 0098139

Organisation no:

923 248 579

Issue date: 07.08.2023

Valid to: 07.08.2028

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. Approval number: NEPDT07

Developer of EPD: Cleo Alves Otterbech

Reviewer of company-specific input data and EPD: Ragnhild Bjerkvik Alnes

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

SteelMaster 1200WF is a one component waterborne acrylic thin film intumescent coating. It is independently approved for fire protection of structural steel exposed to cellulosic fire and can be used as mid coat or finish coat in atmospheric environments. It is suitable on approved primers on carbon steel substrates.

The declared product is specially designed as a reactive fire protection system for steel constructions. It is designed to protect for up to 180 minutes on a wide range of I section beams, columns and hollows.

SteelMaster 1200WF is suitable for structural steel exposed to internal environments. For a detailed coating specification please contact your local Jotun representative.

Product specification

For information on Green Building Standard credits, see "Additional Information" on page 4.

The material composition of the declared product is given below:

Materials	Value	Unit
Filler	25 - 50	%
Binder	10 - 25	%
Titanium dioxide	10 - 25	%
Water	10 - 25	%
Solvent	3 - 5	%
Additive	1 - 3	%
Biocide	0 - 0.1	%

Technical data:

Density: 1.4 g/cm³. Solids by volume: 69 ± 3 volume%

Film thickness per coat: Dry film thickness: 210 - 690 μm Wet film thickness: 300 - 1000 μm

The most representative and worst case formulation produced at the manufacturing site is chosen for this EPD. For products with a selection of colours, this will be the formulation with the highest content of titanium dioxide.

The product packaging is based on an average sized metal packaging, including secondary packaging such as pallets and plastic wrapping.

For safety, health and environmental conditions, see the Safety Data Sheet for the declared product on www.jotun.com.

For information on technical data, application and use of the product, see the Technical Data Sheet for the declared product on www.jotun.com.

Market:

It covers the regional markets where the product is produced.

Reference service life, product

The reference service life of the product is highly dependent on the conditions of use.

Estimated service life, object

The coated object is not declared.

LCA: Calculation rules

Declared unit:

1 kg SteelMaster 1200WF, Jotun India Private Limited

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

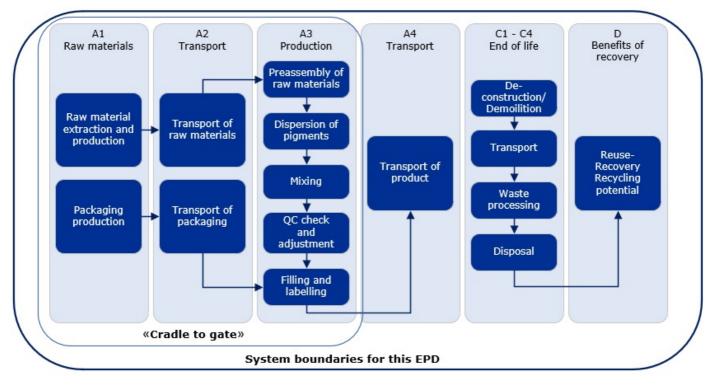
Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Additives	CEPE RM Database v3.0	Database	2016
Binders and Resins	CEPE RM Database v3.0	Database	2016
Others	CEPE RM Database v3.0	Database	2016
Pigments and Fillers	CEPE RM Database v3.0	Database	2016
Solvent	CEPE RM Database v3.0	Database	2016
Packaging	ecoinvent 3.6	Database	2019



System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product sta	ge		uction on stage		Use stage					End of life stage				Beyond the system boundaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	MND	MND	MND	MND	MNR	MND	MND	MND	Х	Х	Х	Х	Х

System boundary:

The flowchart in the figure below illustrates the system boundaries for the analysis, in accordance with the modular principle on EN 15804+A2. The analysis is a cradle-to-gate (A1-A3) study with options, in addition to module A4, transport to market, modules C1-C4 and module D are included.

Additional technical information:

The declared product contributes to Green Building Standard credits by meeting the following specific requirements:

LEED ® v4.1 (2020)/LEED ® v4 (2013)

EQ credit: Low-emitting materials

- VOC content for Fire Resistive Coatings (150 g/l) (CARB(SCM)2020) and emission 5.0 mg/m³ or more (CDPH method 1.2).

MR credit: Building product disclosure and optimization

- Environmental Product Declarations: Product-specific Type III EPD (ISO 14025;21930, EN 15804) for Jotun India Private Limited.

BREEAM
[®] International (2021)/BREEAM [®] International (2016)

- Mat 01: Product-specific Type III EPD (ISO 14025;21930, EN 15804) for Jotun India Private Limited.

SteelMaster 1200WF is fire tested and approved to BS 476 part 20/21 and EN 13381-8:2013.

Additional certificates and approvals may be available on request.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

This is a cradle to gate (A1-A3) study with options, modules C1-C4, module D and additional module A4 transport to market have been included, as described below.

Module A4 includes the transport of 1 kg of the declared product with packaging from place of production to the market where the product is sold. The calculation is based on average distances to distribution centers in the local market. The declared product is assumed to be transported with the common type of truck used locally.

Module C considers the end-of-life of the construction material. The calculations for module C are based on dried/cured paint. Solvents and water are subtracted from the total coating mass due to the drying/curing processes occurring in modules A5 and B2. Similarly, packaging waste is generated in module A5 and B2, thus it is not accounted for in module C.

Module C1 is modelled with zero impact for the declared product. The coating is not removed from the substrate during decommissioning process, therefore the impact is allocated to the coated object.

Module C2 includes the transport of the paint waste to the closest disposal or waste treatment facility. It is assumed that the waste is transported by truck with average characteristics listed in the Table. The transportation distance is set to 50 km.

Module C3 is modelled with no waste paint processing.

Module C4, paint waste is gathered as part of the substrate in construction materials. A typical disposal scenario for paint applied on that substrate is landfill, therefore it is assumed that 100% of the paint waste is sent to landfill facilities.

Module D. Recycling of applied paint is not a common practice, therefore the reuse, recovery and recycling potential is set to zero.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck World, over 32 tonnes, EURO 4 (km)	55,0 %	899	0,023	l/tkm	20,68
De-construction demolition (C1)	Unit	Value			
Energy use during decommissioning	kWh/DU	0,00			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck World, over 32 tonnes, EURO 4 (km)	55,0 %	50	0,023	l/tkm	1,15
Waste processing (C3)	Unit	Value			
Waste treatment per kg Paint, municipal incineration, World (kg)	kg/DU	0,00			
Disposal (C4)	Unit	Value			
Waste treatment per kg Paint, inert material landfill, World (kg)	kg/DU	0,72			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of raw materials (kg)	kg/DU	0,00			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	Environmental impact												
	Indicator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D		
P	GWP-total	kg CO ₂ -eq	3,16E+00	1,21E-01	1,34E-01	9,30E-02	0,00E+00	3,36E-03	0,00E+00	1,40E-02	0,00E+00		
P	GWP-fossil	kg CO ₂ -eq	3,17E+00	1,21E-01	1,34E-01	9,30E-02	0,00E+00	3,36E-03	0,00E+00	1,40E-02	0,00E+00		
P	GWP-biogenic	kg CO ₂ -eq	-6,20E-03	3,91E-05	2,11E-04	3,69E-05	0,00E+00	1,33E-06	0,00E+00	6,72E-06	0,00E+00		
P	GWP-luluc	kg CO ₂ -eq	4,21E-04	6,48E-05	1,44E-05	2,80E-05	0,00E+00	1,01E-06	0,00E+00	4,64E-06	0,00E+00		
Ò	ODP	kg CFC11 -eq	1,01E-06	2,63E-08	1,79E-09	2,10E-08	0,00E+00	7,58E-10	0,00E+00	3,90E-09	0,00E+00		
Ê	AP	mol H+ -eq	2,57E-02	2,61E-03	6,77E-04	4,78E-04	0,00E+00	1,72E-05	0,00E+00	7,79E-05	0,00E+00		
÷	EP-FreshWater	kg P -eq	1,94E-03	7,33E-07	8,28E-06	8,37E-07	0,00E+00	3,02E-08	0,00E+00	1,23E-07	0,00E+00		
÷	EP-Marine	kg N -eq	3,57E-03	6,64E-04	1,26E-04	1,59E-04	0,00E+00	5,76E-06	0,00E+00	2,48E-05	0,00E+00		
	EP-Terrestial	mol N -eq	2,81E-02	7,38E-03	1,47E-03	1,76E-03	0,00E+00	6,35E-05	0,00E+00	2,74E-04	0,00E+00		
	РОСР	kg NMVOC -eq	9,62E-03	1,95E-03	3,83E-04	5,24E-04	0,00E+00	1,89E-05	0,00E+00	8,17E-05	0,00E+00		
4 59	ADP-minerals&metals ¹	kg Sb -eq	3,68E-05	1,35E-06	2,48E-07	1,58E-06	0,00E+00	5,69E-08	0,00E+00	3,12E-07	0,00E+00		
F	ADP-fossil ¹	MJ	4,67E+01	1,67E+00	1,61E+00	1,43E+00	0,00E+00	5,17E-02	0,00E+00	2,61E-01	0,00E+00		
%	WDP ¹	m ³	1,62E+01	4,47E-01	9,15E-02	5,07E-01	0,00E+00	1,83E-02	0,00E+00	1,80E-01	0,00E+00		

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Additio	Additional environmental impact indicators												
Inc	dicator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D		
	PM	Disease incidence	3,31E-07	4,13E-09	2,39E-09	8,00E-09	0,00E+00	2,89E-10	0,00E+00	1,44E-09	0,00E+00		
	IRP ²	kgBq U235 -eq	2,34E+02	7,11E-03	1,47E-03	6,04E-03	0,00E+00	2,18E-04	0,00E+00	1,11E-03	0,00E+00		
	ETP-fw ¹	CTUe	3,98E+01	1,12E+00	3,83E+00	1,12E+00	0,00E+00	4,04E-02	0,00E+00	1,76E-01	0,00E+00		
	HTP-c ¹	CTUh	1,47E-08	0,00E+00	3,70E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,00E-12	0,00E+00		
4 <u>8</u>	HTP-nc ¹	CTUh	5,41E-07	5,15E-10	2,05E-09	1,00E-09	0,00E+00	3,60E-11	0,00E+00	1,70E-10	0,00E+00		
	SQP ¹	dimensionless	1,77E+01	9,61E-01	2,19E-01	1,62E+00	0,00E+00	5,85E-02	0,00E+00	3,24E-01	0,00E+00		

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource us	e										
	dicator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D
î, B	PERE	MJ	2,99E+00	1,42E-02	7,90E-02	1,54E-02	0,00E+00	5,56E-04	0,00E+00	3,04E-03	0,00E+00
	PERM	MJ	9,73E-02	0,00E+00							
្ក	PERT	MJ	3,09E+00	1,42E-02	7,90E-02	1,54E-02	0,00E+00	5,56E-04	0,00E+00	3,04E-03	0,00E+00
Ð	PENRE	MJ	7,49E+01	1,67E+00	1,61E+00	1,43E+00	0,00E+00	5,17E-02	0,00E+00	2,61E-01	0,00E+00
.Åe	PENRM	MJ	1,60E-01	0,00E+00							
IA	PENRT	MJ	7,50E+01	1,67E+00	1,61E+00	1,43E+00	0,00E+00	5,17E-02	0,00E+00	2,61E-01	0,00E+00
	SM	kg	2,10E-02	0,00E+00	8,34E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,88E-05	0,00E+00
2	RSF	MJ	1,42E-02	3,38E-04	5,35E-05	3,57E-04	0,00E+00	1,29E-05	0,00E+00	9,79E-05	0,00E+00
1	NRSF	MJ	9,15E-02	3,24E-03	5,08E-04	2,15E-03	0,00E+00	7,77E-05	0,00E+00	3,80E-04	0,00E+00
\$	FW	m ³	2,35E+00	1,38E-04	3,89E-04	1,74E-04	0,00E+00	6,29E-06	0,00E+00	1,30E-04	0,00E+00

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SENRE = Use of secondary materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life -	Waste										
Inc	licator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D
Ā	HWD	kg	1,42E-02	9,60E-05	1,80E-04	1,09E-04	0,00E+00	3,95E-06	0,00E+00	1,61E-05	0,00E+00
Ū	NHWD	kg	1,22E+00	6,58E-02	1,07E-02	1,23E-01	0,00E+00	4,45E-03	0,00E+00	7,29E-01	0,00E+00
æ	RWD	kg	7,61E-05	1,14E-05	1,16E-06	9,51E-06	0,00E+00	3,43E-07	0,00E+00	1,75E-06	0,00E+00

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Enc	d of life - O	utput flow										
	Indica	tor	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D
	¢۵	CRU	kg	0,00E+00								
	\$D	MFR	kg	1,60E-04	0,00E+00	1,19E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,70E-05	0,00E+00
	\square	MER	kg	1,73E-02	0,00E+00	3,78E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,19E-07	0,00E+00
	5D	EEE	MJ	6,24E-04	0,00E+00	6,75E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,89E-06	0,00E+00
	DU	EET	MJ	9,43E-03	0,00E+00	1,02E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,86E-05	0,00E+00

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content									
Indicator	Unit	At the factory gate							
Biogenic carbon content in product	kg C	0,00E+00							
Biogenic carbon content in accompanying packaging	kg C	3,56E-03							

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, India (kWh)	ecoinvent 3.6	1550,61	g CO2-eq/kWh

Dangerous substances

The product contains substances, more than 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.

Name	CASNo	Amount
Melamine	108-78-1	9.5%

Indoor environment

The declared product is emission tested by RISE Research Institutes of Sweden/SP Technical Research Institute of Sweden or Eurofins in accordance with California Department of Public Health (CDPH) Standard Method v1.2–2017.

Additional Environmental Information

A	Additional environmental impact indicators required in NPCR Part A for construction products												
	Indicator	Unit	A1	A2	A3	A4	C1	C2	C3	C4	D		
	GWPIOBC	kg CO ₂ -eq	3,18E+00	1,21E-01	1,32E-01	9,30E-02	0,00E+00	3,36E-03	0,00E+00	1,40E-02	0,00E+00		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

CEPE v3.0 Raw materials LCI database for the European coatings and printing ink industries, May 2016.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21

Vold et al (2017). EPD and LCA tool for Jotun - Technical description and background information, OR 01.17, Ostfold Research, Fredrikstad 2017. Iversen, (2022) EPD generator for Jotun, Background information for re-verification of EPD generator application and LCA data, LCA.no report number: 15.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

IBU PCR Part B: Requirements on the EPD for Coatings with organic binders. v1.7, April 2019.

BREEAM International (2021): BREEAM International New Construction Technical Manual - SD250. Ver. 6.0 (2021).

BREEAM International (2016): BREEAM International New Construction Technical Manual - SD233. Ver. 2.0 (2017).

BS 476-20 Fire Resistance Test to Building Material – Standard.

BS 476-21 Fire Resistance Test to Building Material – Standard.

CARB SCM (2020): California Air Resources Board (CARB) Suggested Control Measure for Architectural Coatings.

CDPH method 1.2 (2017): Standard method for the testing and evaluation of volatile organic chemical emissions from indoor sources. California Department of Public Health.

EN 13381-8:2013: Test methods for determining the contribution to the fire resistance of structural members - Part 8: Applied reactive protection to steel members.

LEED ®v4.1 (2020): LEED ® v4.1 for Building design and construction, U.S. Green Building Council ®.

LEED ®v4 (2013): LEED ® v4 for Building design and construction, U.S. Green Building Council ®.

REACH (2006): Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006. REACH Authorization list – Annex XIV, the Restriction list – Annex XVII and the SVHC candidate list.

and narway	Program operator and publisher	Phone:	+47 23 08 80 00
epd-norway	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
	Owner of the declaration:	Phone:	+47 33 45 70 00
	Jotun A/S	e-mail:	cleo.otterbech@jotun.no
	Hystadveien 167, 3209 Sandefjord	web:	www.jotun.no
\bigcirc	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
no	Dokka 6B, 1671	web:	www.lca.no
\frown	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
no	Dokka 6B,1671 Kråkerøy	web:	www.lca.no
ECO PLATFORM	ECO Platform	web:	www.eco-platform.org
	ECO Portal	web:	ECO Portal