

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804 Owner of the declaration:

Program operator:

Publisher:

Declaration number:

Registration number:

ECO Platform reference number:

Issue date:

Valid to:

SSE Holding SA / SSE

The Norwegian EPD Foundation The Norwegian EPD Foundation

NEPD-5040-4358-EN

NEPD-5040-4358-EN

30.12.2022

30.12.2027

Water-gel explosives, cartridged Tovex SE

SSE Holding SA / SSE

www.epd-norge.no

General information

Product:

Water-gel explosives, cartridged

Tovex SE

Program operator:

The Norwegian EPD Foundation Postboks 5250 Majorstuen, 0303 Oslo

Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-5040-4358-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804 serves as core PCR NPCR 024 version 2.0 Explosives and Initiation Systems (11/2021)

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg of manufactured, installed and used (detonated) cartridged water-gel explosives product

Declared unit with option:

Functional unit:

Verification:

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to

ISO14025:2010

internal external

Third party verifier:

Ole M. K. Iversen

(independent verifier approved by EPD Norway)

Owner of the declaration:

SSE Holding SA / SSE

Contact person: Rolf Imboden Phone: +41 27 922 72 13

e-mail: rolf.imboden@sse-group.com

Manufacturer:

SSE Holding SA / SSE

Place of production:

Switzerland

Management system:

Organisation no:

UID-Nr. CHF 252.682.821

Issue date:

30.12.2022

Valid to:

30.12.2027

Year of study:

LCA conducted in 2023. Production data is from 2021.

Comparability:

EPD of construction products may not be comparable if they do not comply with EN 15804 and are seen in a building context.

The EPD has been worked out by:

EPD has been developed using FEEM EPD Generator Version 1.5. Data collection has been carried out by

Jens Wutke SSE Holding SA / SSE

Approved

Håkon Hauan Managing Director of EPD-Norway

General information

Product description:

These products available under the name «Explosives with PRM» (PRM = sensitiser) are free of nitro parts. They meet a high level of handling safety and can be used for all blasting work used in underground and surface mining. Above all, TOVEX water-gel explosives show a same level of effectiveness, but significantly less toxic fumes than conventional gelatinous explosives. This circumstance is particularly important when used underground.

Energy content of declared products (MJ/ea): Tovex SE 4.90 MJ/k MJ/ea

Technical data:

1 kg explosives product

EC-type examination certificate:

Tovex SE 0080.EXP.03.0001

Product specification:

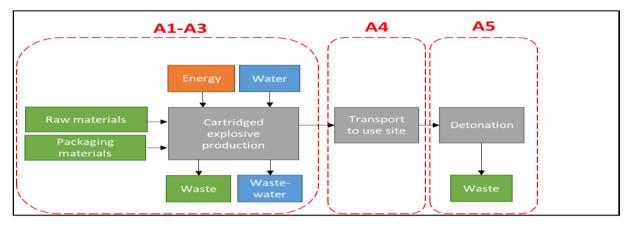
Materials	Amount (%)
Ammonium nitrate	30-35%
Sodium nitrate	20-25%
Calcium nitrate	
Monomethylamine	5-10%

Market:

Nordic countries

Reference service life, product:

Not relevant. Explosives products cannot be used more than once.


LCA: Calculation rules

Declared unit:

1 kg of manufactured, installed and used (detonated) cartridged water-gel explosives product

System boundary:

The flow chart for production, transport and use of cartridged water-gel explosive is shown in the figure below.

Data quality:

Data has been collected in 2021 and is representative of that year. Data for production of explosives (A1-A3) is based on specific consumption data. Detonation of explosives has been calculated from a balanced chemical reaction, at final state and 1 bar (IDeX code, ideal detonation). Generic data is from ecoinvent v3.2, Allocation, Recycled Content and SimaPro v 8.2.3.0. Characterization factors from EN15804: 2012 + A1: 2013.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances

LCA: Scenarios and additional technical information

The following information describes the scenarios in the different modules of the EPD.

This declaration is based on a cradle to gate with options assessment, including production at Gamsen / Valais in Switzerland. Manufacture and detonation of explosives at site is included, as it represents the part of the life cycle in which the explosives are fulfilling its intended function (detonation). Transport to a construction site (A4) has been added, to show the importance of this transport. On average, cartridge explosives are transported 2000 km from storage to use site. Detonation of explosives at site is included, as it represents the part of the life cycle in which the explosives are fulfilling its intended function (detonation). Scenarios for detonation at site in Nordic countries have also been added. The detonation of explosives scenario (A5) represents detonation below ground. Detonation of explosives has been calculated from a balanced chemical reaction, at final state and 1 bar for the decomposition of the explosive.

Transport from production site to use site (A4)

Туре	Cap	pacity utilisation (incl. return) %	Type of vehicle	Distance (km)	Fuel consumption (I/tkm)
Truck		50%	Lorry	1086	0.4
Train		20%	Freight train	914	n/a
Boat		20%	Barge tanker	0	n/a

Detonation of explosives (A5)

Detoliation of explosives (AS)	,	
Emissions to air	Unit	Amount
Carbon, C	kg	0.00E+00
Methane, CH4	kg	0.00E+00
Carbon dioxide, CO2	kg	4.93E-02
Carbon monoxide, CO	kg	1.66E-03
Water, H2O	kg	3.36E-01
Nitrogen, N2	kg	1.81E-01
Nitrogen oxides, NOx	kg	7.12E-03
Sodium carbonate, Na2CO3	kg	1.41E-01
Calcium carbonate, CaCO3	kg	0.00E+00

MND

LCA: Results

The LCA results show environmental impacts, resource use and outflows calculated according to EN 15804: 2012 + A1: 2013. The results are per kg cartridge water-gel explosive, manufactured, charged and detonated at use site. Transport in A4 is 2000 km to a construction site.

Syste	System boundaries (X=included, MND= module not declared, MNR=module not relevant)																
Pro	duct st	age	Assemby stage Use stage End of life stage			Use stage			Э		Beyond the system boundaries						
Raw materials	Transport	Manufacturing	Transport	Detonation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal		Reuse-Recovery- Recycling-potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4		D
																1	

MND MND

MND

MND

MND MND MND

Environmental impact					
Parameter	Unit	A1-A3	A4	A5	
GWP	kg CO2 -eqv	3.15E+00	2.19E-01	4.93E-02	
ODP	kg CFC11-eqv	1.76E-07	3.66E-08	0.00E+00	
POCP	kg C2H4 -eqv	3.89E-04	3.13E-05	-1.47E-03	
AP	kg SO2 -eqv	1.13E-02	8.15E-04	2.70E-03	
EP	kg PO43eqv	8.70E-03	1.41E-04	7.83E-02	
ADPM	kg Sb-eqv	3.81E-05	8.45E-07	0.00E+00	
ADPE	MJ	3.37E+01	3.26E+00	0.00E+00	

MND

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource use				
Parameter	Unit	A1-A3	A4	A5
RPEE	MJ	6.96E+00	7.97E-02	0.00E+00
RPEM	MJ	3.05E+00	0.00E+00	0.00E+00
TPE	MJ	1.00E+01	7.97E-02	0.00E+00
NRPE	MJ	5.33E+01	3.45E+00	0.00E+00
NRPM	MJ	3.72E+00	0.00E+00	0.00E+00
TRPE	MJ	5.70E+01	3.45E+00	0.00E+00
SM	kg	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00
W	m3	1.44E+00	5.65E-04	0.00E+00

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Page 6 of 8

End of life - Waste

Parameter	Unit	A1-A3	A4	A5
HW	kg	6.02E-02	8.21E-06	0.00E+00
NHW	kg	5.70E-01	1.39E-01	0.00E+00
RW	kg	1.25E-04	2.25E-05	0.00E+00

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow

Parameter	Unit	A1-A3	A4	A5
CR	kg	0.00E+00	0.00E+00	0.00E+00
MR	kg	0.00E+00	0.00E+00	0.00E+00
MER	kg	0.00E+00	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	0.00E+00
ETE	MJ	0.00E+00	0.00E+00	0.00E+00

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

Additional requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

National production mix from import, low woltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity in production.

Data source	Amount	Unit
Electricity, medium voltage {CH}	4.86E-09	g CO2-eqv/kWh

Dangerous substances

v	The product contains no substances given by the REACH Candidate list
	· , · · · · · · · · · · · · · · · · · ·

П	The product contains substances given by	by the REACH	Candidate list that	are less than 0,1	1 % by weight.
---	--	--------------	---------------------	-------------------	----------------

 $\label{eq:contain_co$

The product is classified as hazardous waste.*

*Explosive products are not disposed of as waste, but are subject to local regulations and handled accordingly. Definition of hazardous wate is given by the European list of Waste (LoW)

Name	CAS no.	Amount*
Ammonium nitrate	6484-52-2	30-35%
Sodium nitrate	7631-99-4	20-25%
Monomethylamine	74-89-5	5-10%

^{*}Share of delay and explosive elements

Indoor environment

Not relevant. No tests have been carried out on the product concerning indoor climate.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography
ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and

procedures

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declaration - Core rules for the

product category of construction products

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products

Ecoinvent v3.2, November 2015 Swiss Centre of Life Cycle Inventories. https://www.ecoinvent.org/

SimaPro LCA software, developed by PRé Sustainability https://simapro.com/

NPCR PART A Ver 2 Construction Products and Services

NPCR 024 2021 ver. 2.0 Explosives and Initiation Systems

Michael M. Jenssen LCA Report 03.05.2022

	Program operator	Phone:	+47 23 08 80 00
epd-norway	The Norwegian EPD Foundation		
epa-norway	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
 Global Program Operator	Norway	web	www.epd-norge.no
	Publisher	Phone:	+47 23 08 80 00
epd-norway	The Norwegian EPD Foundation		
cpa-norway	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
 Global Program Operator	Norway	web	www.epd-norge.no
	Owner of the declaration	Phone:	+41 27 922 71 11
	SSE Holding SA / SSE		
	Fabrikstrasse 4	e-mail:	info@sse-group.com
	Switzerland	web	https://www.sse-group.com/
	Author of the Life Cycle Assessment	Phone:	+47 417 99 417
	Asplan Viak AS		
	Mie Fuglseth, Michael Myrvold Jenssen	e-mail:	mie.fuglseth@asplanviak.no
	Kjørboveien 20, 1300 Sandvika, Norway	web	www.asplanviak.no