

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Leia Chair

Owner of the declaration:

Kinnarps AB

Product:

Leia Chair

Declared unit:

1 pc

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 026:2022 Part B for Furniture

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-5295-4621-EN

Registration number:NEPD-5295-4621-EN

Issue date: 02.11.2023

Valid to: 02.11.2028

EPD Software:

LCA.no EPD generator ID: 100494

The Norwegian EPD Foundation

General information

Product

Leia Chair

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation

Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number: NEPD-5295-4621-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs Leia Chair

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,B2,B3,B4,C1,C2,C3,C4,D

Functional unit:

Production of one Leia chair, provided and maintained for a period of 15 years.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i integrated into the company's environmental management system, ii the procedures for use of the EPD tool are approved by EPD-Norway, and iii the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat - GREENIZE projects

(no signature required

Owner of the declaration:

Kinnarps AB

Contact person: Johanna Ljunggren - Corporate Sustainability

Manager

Phone: +46 515 381 21

e-mail: johanna.ljunggren@kinnarps.se

Manufacturer:

Kinnarps AB

Place of production:

Kinnarps AB Industrigatan

521 88 Kinnarp, Sweden

Management system:

ISO 9001, ISO 14001, ISO 45001, FSC® (C010544

Organisation no:

556256-6736

Issue date: 02.11.2023

Valid to: 02.11.2028

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Isabell Vesterberg

Reviewer of company-specific input data and EPD: Johanna Ljunggren

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Leia chair with 4-legged steel underframe and plastic seat shell. Upholstered seat cushion, armrests, felt glides and stacking protection are available as options.

Leia is the sustainable shell chair that offers comfortable seating, withstands heavy use, and is available in stackable and linkable versions. The easy-to-clean and scratch-resistant material makes it a perfect chair for meeting rooms and classrooms, auditoriums, coffee shops and restaurants. Leia is available with five different underframes.

Product specification

Leia has a plastic seat shell, and is also available with an upholstered seat cushion or fully upholstered. The highly comfortable polyamide shell relieves pressure on the lower back and legs. The five-star underframe is made of plastic, all other underframes are made of metal.

This EPD includes the following variants:

Leia with metal sledge underframe,

Leia with plastic 5-star base with castors,

Leia with medium height metal sledge underframe, including foot rest,

Leia with high metal sledge underframe, including foot rest,

Leia with 4-legged underframe and completely upholstered seat shell, with 100 % recycled polyester fabric.

Included options are:

Upholstered seat cushion in 100 % recycled polyester fabric, polyester fabric and wool-blend fabric,

Armrests,

Stacking protection,

Felt glides,

Connectors.

Materials	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Chemical	0,55	9,13	0,00	0,00
Metal - Steel	2,38	39,43	0,48	20,00
Plastic - Nylon (PA)	3,10	51,44	0,00	0,00
Total	6,03		0,48	

Technical data:

Certifications:

Swedish Möbelfakta,

GS.

Fulfilled technical standards:

EN 16139 Furniture - Strength, durability and safety - Requirements for non-domestic seating,

EN 1729 Furniture - Chairs and tables for educational institutions.

Fulfilled fire requirements, for upholstered variants:

EN 1021-1 Assessment of the ignitability of upholstered furniture - Part 1: Ignition source smouldering cigarette, with Kinnarps standard fabrics,

EN 1021-2 Assessment of the ignitability of upholstered furniture - Part 2: Ignition source match flame equivalent, with Kinnarps standard fabrics.

Market:

Mainly Europe, but is available world wide.

Reference service life, product

15 years (5 years warranty).

Reference service life, building

LCA: Calculation rules

Declared unit:

1 pcs Leia Chair

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

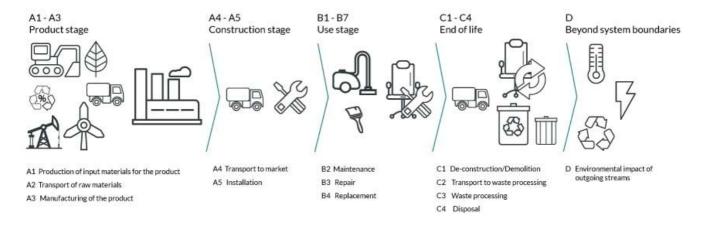
The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Specific data for the manufacturing processes (product stage A3) refers to the year 2020. All other specific data is from year of study.

Materials	Source	Data quality	Year
Chemical	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Plastic - Nylon (PA)	ecoinvent 3.6	Database	2019


System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Pı	roduct stag	ge		uction ion stage				Use stage					End of I	ife stage		Beyond the system boundaries
Raw	materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refu <i>r</i> b ishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
Α	.1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	<	Х	X	X	Χ	MND	Χ	Χ	Х	MND	MND	MND	X	Х	X	Χ	X

System boundary:

The seat shell is manufactured in Kinnarps' production site in Skillingaryd, where the fabric is also processed. Certain steel components are manufactured in Kinnarps' production site in Jönköping and some are purchased as premanufactured components. Final assembly of the product is done at Kinnarps' production site in Kinnarp.

The flow chart below illustrates the system boundaries of the analysis.

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

The product is shipped to the consumer in Kinnarps' trucks with blankets and cardboard sheets as packaging material which is returned to the factory after delivery and reused. This method saves 270 kg of packaging material per container and enables 50% more products to be transported in each truck. Kinnarps' trucks have a load efficiency of over 90% and are run on diesel with renewable content. For more information about sustainability at Kinnarps, visit https://www.kinnarps.com/about-kinnarps/sustainability/.

The maintenance scenario includes wet-wiping once a week for the whole reference service life. For upholstered seat, the maintenance scenario includes vacuum cleaning of textiles once a week for the whole reference service life.

In normal use, no repair or replacement is required during the product's referenced service life.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, HVO, EURO 6 (kgkm)	36,7 %	300	0,043	l/tkm	12,90
Maintenance (B2)	Unit	Value			
Water, tap water (m3)	m3/DU	0,78			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	85	0,023	l/tkm	1,96
Waste processing (C3)	Unit	Value			
Waste treatment per kg Glass, incineration with fly ash extraction (kg)	kg	0,55			
Waste treatment per kg Plastics, Mixture, municipal incineration with fly ash extraction (kg)	kg	3,10			
Waste treatment per kg Scrap steel, incineration with fly ash extraction (kg)	kg	2,38			
Waste, materials to recycling (kg)	kg	0,81			
Disposal (C4)	Unit	Value			
Landfilling of ashes and residues from incineration of Scrap steel (kg)	kg	1,57			
Landfilling of ashes from incineration of Glass, process of ashes and residues (kg)	kg	0,55			
Landfilling of ashes from incineration of Plastics, Mixture, municipal incineration with fly ash extraction, process per kg ashes and residues - C4 (kg)	kg	0,11			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity, in Norway (MJ)	MJ	4,77			
Substitution of primary steel with net scrap (kg)	kg	0,64			
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	72,17			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environme	ental impact							
	Indicator		Unit	A1-A3	A4	A5	B2	В3
	GWP-total	k	g CO ₂ -eq	4,61E+01	7,12E-02	0	2,69E-01	0
•	GWP-fossil	k	kg CO ₂ -eq		7,10E-02	0	2,67E-01	0
	GWP-biogenic	k	kg CO ₂ -eq		1,20E-04	0	1,68E-03	0
	GWP-Iuluc	k	g CO ₂ -eq	4,60E-02	1,11E-04	0	4,35E-04	0
(3)	ODP	kg	CFC11 -eq	1,66E-06	1,46E-08	0	2,37E-08	0
CF.	АР	m	ol H+ -eq	1,90E-01	4,98E-04	0	1,56E-03	0
-	EP-FreshWater		kg P -eq	1,24E-03	2,61E-06	0	2,14E-05	0
	EP-Marine		kg N -eq	4,08E-02	1,32E-04	0	2,48E-04	0
-	EP-Terrestial	r	nol N -eq	4,20E-01	1,47E-03	0	2,88E-03	0
	POCP	kg I	NMVOC -eq	1,45E-01	5,39E-04	0	9,05E-04	0
	ADP-minerals&metals ¹	ı	kg Sb -eq	5,46E-04	8,63E-06	0	7,48E-06	0
	ADP-fossil ¹		MJ	6,21E+02	1,50E+00	0	4,57E+00	0
<u>%</u>	WDP ¹		m^3	7,59E+03	4,45E+00	0	8,18E+01	0
_			***	,				
	Indicator	Unit	 B4	C1	C2	C3	C4	D
	Indicator GWP-total	Unit kg CO ₂ -eq				C3 7,35E+00		
			B4	C1	C2		C4	D
	GWP-total	kg CO ₂ -eq	B4 0	C1 0	C2 4,52E-02	7,35E+00	C4 2,30E-02	D -1,14E+00
	GWP-total GWP-fossil	kg CO ₂ -eq	B4 0 0	C1 0	C2 4,52E-02 4,52E-02	7,35E+00 7,35E+00	C4 2,30E-02 2,30E-02	D -1,14E+00 -1,13E+00
P	GWP-total GWP-fossil GWP-biogenic	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq	B4 0 0	C1 0 0	C2 4,52E-02 4,52E-02 1,93E-05	7,35E+00 7,35E+00 4,49E-04	C4 2,30E-02 2,30E-02 1,74E-05	D -1,14E+00 -1,13E+00 -1,26E-03
	GWP-total GWP-fossil GWP-biogenic GWP-luluc	$kg CO_2$ -eq $kg CO_2$ -eq $kg CO_2$ -eq $kg CO_2$ -eq	B4 0 0 0 0	0 0 0 0	C2 4,52E-02 4,52E-02 1,93E-05 1,38E-05	7,35E+00 7,35E+00 4,49E-04 3,37E-05	C4 2,30E-02 2,30E-02 1,74E-05 7,07E-06	D -1,14E+00 -1,13E+00 -1,26E-03 -1,47E-02
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq	B4 0 0 0 0 0	0 0 0 0 0	C2 4,52E-02 4,52E-02 1,93E-05 1,38E-05 1,09E-08	7,35E+00 7,35E+00 4,49E-04 3,37E-05 1,72E-08	C4 2,30E-02 2,30E-02 1,74E-05 7,07E-06 7,29E-09	D -1,14E+00 -1,13E+00 -1,26E-03 -1,47E-02 -3,05E-02
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq	B4 0 0 0 0 0	0 0 0 0 0	C2 4,52E-02 4,52E-02 1,93E-05 1,38E-05 1,09E-08 1,45E-04	7,35E+00 7,35E+00 4,49E-04 3,37E-05 1,72E-08 1,70E-03	C4 2,30E-02 2,30E-02 1,74E-05 7,07E-06 7,29E-09 1,66E-04	D -1,14E+00 -1,13E+00 -1,26E-03 -1,47E-02 -3,05E-02 -6,97E-03
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq	B4 0 0 0 0 0 0	0 0 0 0 0 0	C2 4,52E-02 4,52E-02 1,93E-05 1,38E-05 1,09E-08 1,45E-04 3,59E-07	7,35E+00 7,35E+00 4,49E-04 3,37E-05 1,72E-08 1,70E-03 1,86E-06	C4 2,30E-02 2,30E-02 1,74E-05 7,07E-06 7,29E-09 1,66E-04 2,27E-07	D -1,14E+00 -1,13E+00 -1,26E-03 -1,47E-02 -3,05E-02 -6,97E-03 -8,09E-05
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq	B4 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	C2 4,52E-02 4,52E-02 1,93E-05 1,38E-05 1,09E-08 1,45E-04 3,59E-07 3,18E-05	7,35E+00 7,35E+00 4,49E-04 3,37E-05 1,72E-08 1,70E-03 1,86E-06 8,02E-04	C4 2,30E-02 2,30E-02 1,74E-05 7,07E-06 7,29E-09 1,66E-04 2,27E-07 5,92E-05	D -1,14E+00 -1,13E+00 -1,26E-03 -1,47E-02 -3,05E-02 -6,97E-03 -8,09E-05 -1,86E-03
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq mol N -eq	B4 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	C2 4,52E-02 4,52E-02 1,93E-05 1,38E-05 1,09E-08 1,45E-04 3,59E-07 3,18E-05 3,55E-04	7,35E+00 7,35E+00 4,49E-04 3,37E-05 1,72E-08 1,70E-03 1,86E-06 8,02E-04 8,24E-03	C4 2,30E-02 2,30E-02 1,74E-05 7,07E-06 7,29E-09 1,66E-04 2,27E-07 5,92E-05 6,55E-04	D -1,14E+00 -1,13E+00 -1,26E-03 -1,47E-02 -3,05E-02 -6,97E-03 -8,09E-05 -1,86E-03 -1,96E-02
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial POCP	kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq mol N -eq kg NMVOC -ec	B4 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	C2 4,52E-02 4,52E-02 1,93E-05 1,38E-05 1,09E-08 1,45E-04 3,59E-07 3,18E-05 3,55E-04 1,39E-04	7,35E+00 7,35E+00 4,49E-04 3,37E-05 1,72E-08 1,70E-03 1,86E-06 8,02E-04 8,24E-03 2,01E-03	C4 2,30E-02 2,30E-02 1,74E-05 7,07E-06 7,29E-09 1,66E-04 2,27E-07 5,92E-05 6,55E-04 1,89E-04	D -1,14E+00 -1,13E+00 -1,26E-03 -1,47E-02 -3,05E-02 -6,97E-03 -8,09E-05 -1,86E-03 -1,96E-02 -6,92E-03

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additional env	ironmental impact ir	dicators						
	Indicator	Unit	A1-A3	A4	A5	B2	В3	
	PM	Disease incidence	Disease incidence		1,65E-08	0	1,31E-08	0
	IRP ²	kgBq U235 -eq	kgBq U235 -eq 3		4,91E-03	0	3,16E-02	0
42	ETP-fw ¹	CTUe		4,95E+02	2,19E+00	0	4,95E+00	0
46.* *** 2	HTP-c ¹	CTUh		6,24E-08	0,00E+00	0	7,39E-10	0
42	HTP-nc ¹	CTUh		6,68E-07	3,66E-09	0	1,64E-08	0
	SQP ¹	dimensionless		1,92E+02	2,80E+00	0	1,28E+00	0
Ind	licator	Unit	B4	C1	C2	C3	C4	D

I I	ndicator	Unit	B4	C1	C2	C3	C4	D
	PM	Disease incidence	0	0	4,15E-09	1,21E-08	3,05E-09	-2,68E-07
	IRP ²	kgBq U235 -eq	0	0	3,21E-03	2,94E-03	2,15E-03	-3,57E-02
40	ETP-fw ¹	CTUe	0	0	5,36E-01	1,65E+01	3,08E-01	-7,21E+01
44. *** <u>\$</u>	HTP-c ¹	CTUh	0	0	0,00E+00	5,47E-10	1,00E-11	-4,01E-09
28	HTP-nc ¹	CTUh	0	0	5,19E-10	2,00E-08	2,81E-10	4,30E-08
	SQP ¹	dimensionless	0	0	8,41E-01	2,18E-01	1,16E+00	-4,05E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	Indicator		U	nit	A1-A3	A4	A5	B2	В3
	PERE		MJ		8,06E+01	6,80E-02	0	6,21E-01	0
	PERM		MJ		0,00E+00	0,00E+00	0	0,00E+00	0
Ţ,	PERT		N	NJ	8,06E+01	6,80E-02	0	6,21E-01	0
B	PENRE		N	NJ	5,05E+02	1,50E+00	0	4,57E+00	0
	PENRM		N	۷J	1,21E+02	0,00E+00	0	0,00E+00	0
ÍÃ	PENRT		N	۷J	6,26E+02	1,50E+00	0	4,57E+00	0
	SM		k	¢g	4,95E-01	0,00E+00	0	0,00E+00	0
2	RSF		N	۷J	9,31E-01	2,21E-03	0	4,98E-02	0
	NRSF		N	۷J	5,26E-01	7,62E-03	0	4,91E-02	0
<u>%</u>	FW		n	n ³	4,24E-01	6,15E-04	0	7,85E-01	0
Ind	icator								
	icatoi	U	Jnit	B4	C1	C2	C3	C4	D
	PERE		Jnit MJ	0 0	C1 0	C2 9,23E-03	C3 6,31E-02	C4 9,70E-03	-3,74E+01
<u>.</u>		1							
	PERE	1	МЈ	0	0	9,23E-03	6,31E-02	9,70E-03	-3,74E+01
	PERE PERM	1	M1 M1	0	0	9,23E-03 0,00E+00	6,31E-02 0,00E+00	9,70E-03 0,00E+00	-3,74E+01 0,00E+00
B ~F.	PERE PERM PERT	1	MJ MJ	0 0 0	0 0 0	9,23E-03 0,00E+00 9,23E-03	6,31E-02 0,00E+00 6,31E-02	9,70E-03 0,00E+00 9,69E-03	-3,74E+01 0,00E+00 -3,74E+01
E ~F.	PERE PERM PERT PENRE	1 1	MI MI MI	0 0 0	0 0 0 0	9,23E-03 0,00E+00 9,23E-03 7,34E-01	6,31E-02 0,00E+00 6,31E-02 1,14E+00	9,70E-03 0,00E+00 9,69E-03 5,38E-01	-3,74E+01 0,00E+00 -3,74E+01 -1,20E+01
S F. G	PERE PERM PERT PENRE PENRM	1	мл мл мл мл	0 0 0 0	0 0 0 0	9,23E-03 0,00E+00 9,23E-03 7,34E-01 0,00E+00	6,31E-02 0,00E+00 6,31E-02 1,14E+00 -1,21E+02	9,70E-03 0,00E+00 9,69E-03 5,38E-01 0,00E+00	-3,74E+01 0,00E+00 -3,74E+01 -1,20E+01 0,00E+00
	PERE PERM PERT PENRE PENRM PENRT	1	мл мл мл мл	0 0 0 0 0	0 0 0 0 0	9,23E-03 0,00E+00 9,23E-03 7,34E-01 0,00E+00 7,34E-01	6,31E-02 0,00E+00 6,31E-02 1,14E+00 -1,21E+02 -1,20E+02	9,70E-03 0,00E+00 9,69E-03 5,38E-01 0,00E+00 5,38E-01	-3,74E+01 0,00E+00 -3,74E+01 -1,20E+01 0,00E+00 -1,20E+01
	PERE PERM PERT PENRE PENRM PENRT SM	1	MJ MJ MJ MJ MJ kg	0 0 0 0 0 0	0 0 0 0 0 0	9,23E-03 0,00E+00 9,23E-03 7,34E-01 0,00E+00 7,34E-01 0,00E+00	6,31E-02 0,00E+00 6,31E-02 1,14E+00 -1,21E+02 -1,20E+02 0,00E+00	9,70E-03 0,00E+00 9,69E-03 5,38E-01 0,00E+00 5,38E-01 0,00E+00	-3,74E+01 0,00E+00 -3,74E+01 -1,20E+01 0,00E+00 -1,20E+01 0,00E+00

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste									
	Indicator		Uı	nit	A1-A3	A4	A5	B2	В3
	HWD	HWD		kg		2,11E-04	0	8,64E-04	0
Ū	NHWD		k	g	5,16E+00	2,23E-01	0	5,55E-02	0
.	RWD		k	g	1,86E-03	6,02E-06	0	2,68E-05	0
In	dicator		Unit	B4	C1	C2	C3	C4	D
	HWD		kg	0	0	4,01E-05	0,00E+00	2,11E+00	-3,97E-03
Ū	NHWD		kg	0	0	6,38E-02	5,50E-01	1,45E-02	-4,31E-01
₩	RWD		kg	0	0	5,01E-06	0,00E+00	3,31E-06	-2,94E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow									
Indi	icator		Unit		A1-A3	A4	A5	B2	В3
@ >	CRU		kg		0,00E+00	0,00E+00	0	0,00E+00	0
\$>	MFR		kg		1,50E+00	0,00E+00	0	0,00E+00	0
DF	MER		kg		1,13E-05	0,00E+00	0	0,00E+00	0
50	EEE		МЈ		6,83E-01	0,00E+00	0	0,00E+00	0
D	EET		МЛ		1,03E+01	0,00E+00	0	0,00E+00	0
Indicato	r	ı	Unit	B4	C1	C2	C3	C4	D
@ >	CRU		kg	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
&>	MFR		kg	0	0	0,00E+00	8,06E-01	0,00E+00	0,00E+00
Þ₹	MER		kg	0	0	0,00E+00	6,03E+00	0,00E+00	0,00E+00
50	EEE		MJ	0	0	0,00E+00	4,84E+00	0,00E+00	0,00E+00
	EET		MJ	0	0	0,00E+00	7,32E+01	0,00E+00	0,00E+00

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content								
Indicator	Unit	At the factory gate						
Biogenic carbon content in product	kg C	0,00E+00						
Biogenic carbon content in accompanying packaging	kg C	0,00E+00						

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Sweden (kWh)	ecoinvent 3.6	54,94	g CO2-eq/kWh

Dangerous substances

The product contains substances given by the REACH Candidate list that are less than 0,1 % by weight.

Indoor environment

The product is low-emitting and tested according to Swedish Möbelfakta.

Additional Environmental Information

Key Environmental Indicators

Key environmental indicators	Unit	A1-A3	A4	A1-C4	A1-D
GWPtotal	kg CO ₂ -eq	46,11	0,07	53,87	52,73
Total energy consumption	MJ	586,61	1,58	596,00	545,18
Amount of recycled materials	%	7,89			

Additional environmental impact indicators required in NPCR Part A for construction products							
Indicator	Unit	Unit		A4	A5	B2	В3
GWPIOBC	kg CO ₂ -eq	kg CO ₂ -eq		7,12E-02	0	2,69E-01	0
Indicator	Unit	B4	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	0	0	4,52E-02	7,35E+00	3,19E-02	-1,49E+00

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Variants and Options

Key environmental indicators (A1-A3) for variants of this EPD					
Variants	Weight (kg)	GWPtotal (kg CO ₂ - eq)	Total energy consumption (MJ)	Amount of recycled materials (%)	
Leia - Sledge underframe	7,40	56,84	779,96	10,15	
Leia - Plastic starbase - Castors	7,40	59,91	779,13	4,65	
Leia - Sledge underframe - Medium height	9,20	66,75	956,77	12,06	
Leia - High sledge underframe	9,80	69,77	1011,48	12,48	
Leia - 4 legs - Upholstered seat shell - 100 % recycled polyester fabric	6,10	45,86	592,48	13,07	

Key environmental indicators (A1-A3) for options for this EPD					
Options	Weight (kg)	GWPtotal (kg CO ₂ -eq)	Total energy consumption (MJ)	Amount of recycled materials (%)	
Leia - Upholstered seat pad - 100 % recycled polyester fabric	0,70	2,67	49,06	26,95	
Leia - Upholstered seat pad - Polyester fabric	0,80	3,13	66,31	0,00	
Leia - Upholstered seat pad - Wool-blend fabric	0,80	18,89	137,23	0,00	
Leia - Armrests, pair	0,09	0,72	11,21	0,00	
Leia - Stacking protection	0,50	1,07	30,69	0,44	
Leia - Felt glides, 4 pcs	0,01	0,04	0,81	0,00	
Leia - Connector, 1 pcs	0,13	0,54	10,83	0,00	

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Ruud et al., (2023) EPD generator for NPCR026 Part B for Furniture - Background information for EPD generator application and LCA data, LCA.no report number 01.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

NPCR 026 Part B for Furniture. Ver. 2.0 March 2022, EPD-Norge.

and norway	Program operator and publisher	Phone: +47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
4.5	Owner of the declaration:	Phone: +46 515 381 21
Kinnarps_	Kinnarps AB	e-mail: johanna.ljunggren@kinnarps.se
` '	Industrigatan, 521 88 Kinnarp	web: kinnarps.com
	Author of the Life Cycle Assessment	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
	Dokka 6B, 1671	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
	Dokka 6B,1671 Kråkerøy	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
VERIFIED	ECO Portal	web: ECO Portal