

General information

Product:	Owner of the declaration:				
The following products are covered within this EPD:	Kingspan OY / Paroc panel systems				
- ·	Contact person: Eric Henningsson				
AST® S LEC Built-On Wall Panel	Phone: +46 706353537				
AST® S LEC Delign Architectural Wall Panel	e-mail: eric.henningsson@parocpanels.com				
AST® S LEC Shadow Architectural Wall Panel	o main				
AST® S LEC Wall Panel	Manufacturer:				
AST® S+ LEC Wall Panel	Kingspan OY / Paroc panel systems				
ASTW ST LLC Wall Fallel	Sysilahden teollisuusalue 2 Parainen, FI-21600				
Dragram anarotori	Phone: +358 468768716				
Program operator: The Norwegian EPD Foundation					
P.O. Box 5250 Majorstuen, 0303 Oslo Norway	e-mail: panelinfo@parocpanels.com				
	Diago of anadustions				
	Place of production:				
e-mail: post@epd-norge.no	Parainen, Finland				
Declaration number:					
NEPD-5438-4715-EN	Management system:				
	ISO 14001, ISO 9001, ISO 450001, ISO 50001, BES 6001				
ECO Platform reference number:					
This declaration is based on Product Category Rules:	Organisation no:				
CEN Standard EN 15804 serves as core PCR	2383916-7				
NPCR part A ver 2.0 Construction products and services					
NPCR part B 010 ver 4.0 Building Boards					
Statement of liability:	Issue date:				
The owner of the declaration shall be liable for the	22.11.2023				
underlying information and evidence. EPD Norway shall not	22.11.2020				
be liable with respect to manufacturerinformation, life cycle					
assessment data and evidences.	Walld to				
	Valid to:				
	22.11.2028				
	v				
Declared unit:	Year of study:				
1 m2 covering surface of installed Paroc stonewool sandwich	2022				
panel, including waste treatment at end-of-life.					
Declared unit with option:	Comparability:				
	EPD of construction products may not be comparable if they				
	not comply with EN 15804 and seen in a building context.				
	Hot comply that Ert 1000 Fand 000H in a banding context.				
Functional unit:	The EPD has been worked out by:				
1 m2 covering surface of installed Paroc stonewool sandwich	Hannes Westberg				
panel, from cradle-to-grave, with activities needed for a study	Niclas Silfverstrand RAMBOLL				
· · · · · · · · · · · · · · · · · · ·	Micias Siliveistratio RAMBOLL				
period of 60 years for the building					
Moderne					
Verification:					
The CEN Norm EN 15804 serves as the core PCR.					
Independent verification of the declaration and data, according					
to ISO14025:2010					
☐ internal					
	Approved ,				
Third party verifier:	, A				
V Hay wass	Makin Mauran				
(0	Håkon Hauan				
Martin Erlandsson, IVL Swedish Environmental Research Inst	Håkon Hauan Managing Director of EPD-Norway				
(Independent verifier approved by EPD Norway)					

2

Product

Product description:

AST® LEC insulated panels are part of our Lower Embodied Carbon solutions. The AST® (Advanced Structural Technology) ensures high tensile strength, reliable longevity and high fire resistance of sandwich panels. AST® LEC insulated panels can be installed in a variety of wall and ceiling applications, especially where high fire resistance and a low carbon footprint are required.

Product specification:

The life cycle assessment is based on 1 m2 of Paroc AST S LEC 150 mm stonewool sandwich panels. This EPD is valid for all variations of Paroc AST S LEC and Paroc AST S+ LEC.

The deviation of the LCA results for the AST S+ LEC relative to AST S LEC panels are estimated to be less than 1%

The panels are produced in different thicknessess. The evironmental impact of the panels with different thicknesses can be estimated by multiplying the LCA result of each impact category in the environmental impact table (page 7) with the corresponding factors given in table 3.

Table 1: Composition of 1m² of AST S LEC 150 mm panel.

Table 1. Composition of the of the	0.0100	o min panon
Materials	kg	%
Mineral wool	12,75	57,4
Metal sheet	8,9	40,1
Glue	0,54	2,4
Sealant	0,01	0,1
Total	22,2	100
Packagi	ng	
Forklift- and supportfoot (EPS)	0,17	
Wrapping plastic (LLDPE)	0,07	
Cellular plastic (foamed LD-PE)	0,03	
Top protection (cardboard)	0,16	
Sum Packaging	0,42	

Technical data:

The mass of the declared unit is 22,93 kg and the thickness is 150 mm.

Technical specification can be found on the product page for each panel:

AST S LEC:

https://www.parocpanels.com/gb/en/products/wall-panel-systems/ast-panel-systems/ast-s-lec

AST S+ LEC:

https://www.parocpanels.com/gb/en/products/wall-panel-systems/ast-panel-systems/ast-s-plus-lec

Market:

The scenarios beyond cradle-to-gate are based on the Norweigan market. The panels are sold to customers in Finland, Sweden, Norway, Denmark, and Exports to mainly Germany and UK.

Reference service life, product:

The reference service life of Paroc stonewool sandwich panels is 60 years is when applied according to the product description.

Reference service life, building:

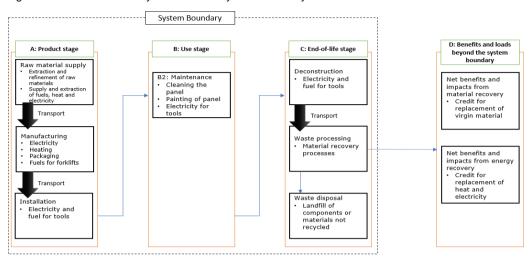
The reference service life of 60 years has been assumed for the building in all calculations.

Table 3: Factors for the estimation of the environmental impact from different panel thicknesses. Multiply the LCA-result of each impact category in the environmental impact table (page 7) with the corresponding factors.

Impact		Thickness [mm]							
category	50	80	100	120	150	175	200	240	300
GWP-total	0,81	0,86	0,90	0,94	1,00	1,05	1,10	1,18	1,29
GWP-fossil	0,80	0,86	0,90	0,94	1,00	1,05	1,10	1,18	1,30
GWP-biogenic	0,94	0,96	0,97	0,98	1,00	1,01	1,03	1,05	1,09
GWP-luluc	0,94	0,96	0,97	0,98	1,00	1,01	1,03	1,05	1,08
ODP	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
AP	0,59	0,71	0,79	0,88	1,00	1,10	1,21	1,37	1,62
EP-freshwater	0,94	0,96	0,97	0,98	1,00	1,02	1,03	1,06	1,09
EP-marine	0,81	0,87	0,91	0,94	1,00	1,05	1,09	1,17	1,28
EP-terrestrial	0,58	0,71	0,79	0,87	1,00	1,10	1,21	1,38	1,63
POCP	0,79	0,86	0,90	0,94	1,00	1,05	1,10	1,19	1,31
ADPm1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
ADPf1	0,83	0,88	0,91	0,95	1,00	1,04	1,09	1,16	1,26
WDP1	0,82	0,88	0,91	0,95	1,00	1,04	1,09	1,16	1,26
PERE	0,79	0,85	0,89	0,94	1,00	1,05	1,11	1,19	1,32
PERM	0,37	0,56	0,68	0,81	1,00	1,16	1,32	1,57	1,95
PERT	0,77	0,84	0,89	0,93	1,00	1,06	1,11	1,20	1,34
PENRE	0,88	0,92	0,94	0,96	1,00	1,03	1,06	1,11	1,18
PENRM	0,34	0,54	0,67	0,80	1,00	1,16	1,33	1,59	1,99
PENRT	0,83	0,88	0,91	0,95	1,00	1,04	1,09	1,15	1,26
SM	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
RSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
NRSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
FW	0,46	0,62	0,73	0,84	1,00	1,13	1,27	1,48	1,80

Conversion factor				Th	ickness [mn	n]			
to kg per m ² panel	50	80	100	120	150	175	200	240	300
AST S LEC	14,4	17,0	18,7	20,4	22,9	25,1	27,2	30,6	35,7
AST S+ LEC	14,5	17,1	18,8	20,5	23,1	25,2	27,4	30,8	36,0

LCA: Calculation rules


Functional unit:

1 m2 covering surface of installed Paroc stonewool sandwich panel, including waste treatment at end-of-life.

System boundary:

A diagram of the system boundary is shown in figure 1 below. A tabular overview of the system boundary is shown on page 7.

Figure 1: Illustration of the system and the system boundary

Data quality:

The data quality requirements are according to EN15804 and PCR 010 ver 4.0 for building boards. Specific data from 2022 production at the manufacturing site is applied in A3.The production data for Paroc stonewool sandwich panels is from one production site, Parainen in Finland, and therefore no average data has been used for different locations. Generic datasets were obtained from the Sphera Professional database 2023 and Ecoinvent v3.8. To represent the stone wool in the product the EPD PAROC FI Produced Stone Wool Thermal Insulation has been used (NEPD-4607-3858-EN).

Cut-off criteria:

General cut-off criteria are given in standard EN 15804 clause 6.3.5. In compliance with these criteria, all major raw materials and all the essential energy are included. The infrastructure of the manufacturing site, production of packaging for incoming raw materials, joint insulation, joint sealants and screws used in A5 with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy	Value
	Capacity utilisation (inci. return) 70			consumption	(kg/km)
Truck	50	Euro V (28-32t gw), Truck	29	0,02 kg/tkm	0,42
Boat	53	Freight ship	229	0,0009 kg/tkm	66,1
Truck	50	Euro V (28-32t gw), Truck	900	0,02 kg/tkm	0,42

The transport in A4 is a representative transport distance from production site in Finland to the building site in Norway.

Assembly (A5)

	Unit	Value
Auxiliary	kg	0,47
Electricity consumption	kWh	0,017
Other energy carriers	kWh	0,044
Material loss	kg	0

The installation (A5) includes the energy and materials used for unloading of the panel packages from a truck, lifting up the panels to the building frame and fixing the panels with screws and selants. Material loss is estimated to be 0. Module A5 is based on an estimated scenario for assembly and is not based on measured data.

Use (B1)

	Unit	Value
No LCA-related environmental impacts	-	-

There is no environmental related impact (B1) by the panel during the service life.

Maintenance (B2)/Repair (B3)

	Unit	Value
Paint used for maintenance	kg	0,24
Detergent used for cleaning	kg	0,2
Water used for cleaning	ı	7,6
Electricity use	kWh	0,556

Replacement (B4)/Refurbishment (B5)

	Unit	Value
Replacement cycle*	Yr	60

^{*} Number or RSL (Reference Service Life)

The maintenance (B2) of the panels is assumed to be performed by applying two layers of paint once during the life time of the panels. Cleaning of the surface of the panels using detergent four times during the life time is also included.

In normal use scenario, it is assumed that there is no repair (B3), replacement (B4) and refubrishment (B5) is needed.

Operational energy (B6) and water consumption (B7)

	Unit	Value
No LCA-related environmental impacts		

B6 and B7 do not have any LCA-related impacts.

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	
Collected as mixed construction waste	kg	
Reuse	kg	
Recycling	kg	9,4
Energy recovery	kg	
To landfill	kg	13,3

End-of-life life scenario, C1, C3 and C4, is based on materials being separated on site. The steel is assumed to be 100% recycled and the mineral wool is assumed to be 100% landfilled. Energy for deconstruction is included in C1, and activities related to steel recycling is included in C3. The resource use for C1 is the same as A5.

Transport to waste processing (C2)

Transport to musto proceeding (CE)						
	Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy	Value
		Capacity dimisation (inci. retain) 70			consumption	(l/t)
	Truck	61	Euro V (28-32t gw), Truck	50	0,02 kg/tkm	1,2

The transport in C2 represents transport to recycling and disposal site in Norway.

Benefits and loads beyond the system boundaries (D)

	Unit	Value
Net steel recycling	kg	0,77
Heat replaced	MJ	2,64
Electricity replaced	MJ	1,49

The net virgin steel minus 10% losses is in module D substituted with virgin steel produced on the european market. 9% of incoming steel to the system is virgin steel whereby 8% of the steel leaving C3 recieves a credit.

Moreover, the energy recovered is assumed to replace the local energy mixes, Norweigan electrical and district heating mixes. European district heating mix was used as proxy data to represent the Norweigan district heating mix.

LCA: Results

The calculations are based on the Paroc AST S LEC stonewool sandwich panels. The deviation of the LCA results for the AST S+ LEC Paroc stonewool sandwich panels product range is estimated to be less than 1%.

Note that when interpreting the results, the benefirs from recylcing of the steel in module D is calculated based on assumption of 100% steel

System boundaries (X=included, MND= module not declared, MNR=module not relevant)

Pro	duct st	age	Assem	by stage				Use st	age			Er	d of life	e stage)	Beyond the system boundaries
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Environme	ental impa	act								
Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D
GWP-total	kg CO2 eq.	1,78E+01	2,11E+00	2,15E+00	9,11E-01	9,16E-03	9,67E-02	5,41E-01	1,94E-01	-1,17E+00
GWP-fossil	kg CO2 eq.	1,80E+01	2,08E+00	2,12E+00	1,06E+00	9,05E-03	9,56E-02	5,41E-01	2,00E-01	-1,16E+00
GWP-biogeni	kg CO2 eq.	1,21E-02	6,12E-03	2,24E-02	-3,56E-01	3,60E-05	2,82E-04	2,92E-04	-6,64E-03	-2,58E-03
GWP-luluc	kg CO2 eq.	2,42E-02	1,91E-02	4,09E-04	2,05E-01	7,05E-05	8,83E-04	1,02E-04	6,21E-04	-3,66E-04
ODP	g CFC 11 e	1,15E-08	1,82E-13	1,32E-13	2,62E-08	9,96E-15	1,24E-14	1,12E-07	5,08E-13	-2,58E-12
AP	[mol H+ eq.]	1,05E-01	8,61E-03	3,38E-03	6,05E-03	2,68E-05	3,73E-04	5,52E-03	1,42E-03	-2,62E-03
EP-freshwate	[kg P eq.]	8,04E-05	7,52E-06	1,02E-06	1,81E-04	3,15E-08	3,49E-07	3,14E-05	4,03E-07	-1,98E-06
EP-marine	[kg N eq.]	1,82E-02	4,03E-03	7,65E-04	3,25E-03	1,21E-05	1,74E-04	2,41E-03	3,66E-04	-6,68E-04
EP-terrestrial	[mol N eq.]	3,54E-01	4,51E-02	8,26E-03	1,51E-02	1,35E-04	1,94E-03	2,63E-02	4,03E-03	-7,14E-03
POCP	g NMVOC e	4,58E-02	7,85E-03	2,60E-03	4,87E-03	2,41E-05	3,37E-04	7,24E-03	1,11E-03	-2,23E-03
ADPm*	[kg Sb eq.]	1,84E-03	1,33E-07	7,10E-06	7,99E-06	1,29E-09	6,28E-09	8,85E-07	9,21E-09	-6,94E-08
ADPf*	[MJ]	2,58E+02	2,83E+01	1,31E+01	2,09E+01	1,22E-01	1,30E+00	7,46E+00	2,66E+00	-1,07E+01
WDP*	[m3]	3,05E+00	2,38E-02	4,01E-01	2,08E+00	3,53E-04	1,15E-03	2,38E-02	2,19E-02	-3,26E-02

GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidifcation; EP-freshwater = Eutrophication – aquatic freshwater; EP-marine = Eutrophication – aquatic marine; EP-terrestrial = Eutrophication – terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential - minerals and metals; ADPf = Abiotic Depletion Potential - fossil fuels; WDP

^{*} The results of this environmental indicator shall be used with care as the uncertainties on these results are high or as there is limited

Additional	environn	environmental impacts										
Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D		
PM	incidence]	1,27E-06	5,35E-08	4,19E-08	6,55E-08	1,60E-10	2,12E-09	1,44E-07	1,74E-08	-3,58E-08		
IRP2	eq.]	3,00E-01	5,28E-03	2,45E-02	7,33E-02	3,98E-04	3,64E-04	3,58E-02	3,50E-03	-1,88E-02		
ETP-fw1	[CTUe]	1,44E+02	1,97E+01	3,13E+00	3,31E+01	7,91E-02	9,22E-01	4,82E+00	1,45E+00	-2,57E+00		
HTP-c1	[CTUh]	4,60E-08	4,01E-10	1,27E-08	4,33E-09	5,55E-12	1,89E-11	1,59E-10	2,24E-10	-1,30E-09		
HTP-nc1	[CTUh]	1,11E-07	2,47E-08	2,06E-08	3,25E-07	9,79E-11	1,16E-09	3,97E-09	2,46E-08	-1,68E-08		
SQP1	-	5,58E+01	1,17E+01	6,57E-01	2,43E+01	5,36E-02	5,43E-01	1,08E+00	6,46E-01	-4,99E+00		
Caption	PM = Parti	culate Matter em	nissions; IRP = Ioni		uman health; ETP-f			= Human toxicity	– cancer effects; H	ГР-nc = Human		
	1 The results of this environmental indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.											
Disclaimers	2 This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.											

Resource	Resource use												
Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D			
RPEE	MJ	3,19E+02	1,99E+00	2,83E+00	1,15E+01	1,70E-01	9,45E-02	7,82E-02	4,34E-01	-4,63E+00			
RPEM	MJ	2,19E+00	0,00E+00	-2,19E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
TPE	MJ	3,21E+02	1,99E+00	6,43E-01	1,15E+01	1,70E-01	9,45E-02	7,82E-02	4,34E-01	-4,63E+00			
NRPE	MJ	2,48E+02	2,83E+01	2,42E+01	2,12E+01	1,23E-01	1,30E+00	7,46E+00	2,66E+00	-1,08E+01			
NRPM	MJ	1,11E+01	0,00E+00	-1,11E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
TRPE	MJ	2,59E+02	2,83E+01	1,31E+01	2,12E+01	1,23E-01	1,30E+00	7,46E+00	2,66E+00	-1,08E+01			
SM	kg	7,73E+00	0,00E+00	1,22E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
W	m ³	3,21E-01	2,19E-03	9,97E-03	4,95E-02	2,35E-04	1,04E-04	5,55E-04	6,72E-04	-4,77E-03			

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life	End of life - Waste											
Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D		
HW	kg	1,65E-04	1,05E-10	9,89E-09	2,43E-10	-1,40E-11	4,04E-12	0,00E+00	5,80E-11	3,58E-10		
NHW	kg	3,85E+00	4,07E-03	6,16E-02	5,88E-01	8,89E-05	1,99E-04	0,00E+00	1,33E+01	-1,87E-02		
RW	kg	6,25E-03	3,66E-05	2,19E-05	2,35E-04	3,36E-06	2,44E-06	0,00E+00	3,03E-05	-1,80E-04		

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life	End of life - Output flow												
Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D			
CR	kg	0	0	0,00E+00	0	0	0	0,00E+00	0	0			
MR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,97E+00	0,00E+00	0,00E+00			
MER	kg	0	0	0,00E+00	0	0	0	0,00E+00	0	0			
EEE	MJ	0,00E+00	0,00E+00	1,49E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
ETE	MJ	0,00E+00	0,00E+00	2,64E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Instantane	Instantaneous oxidation of biogenic carbon											
Indicator	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D		
GWP-IOBC	[kg CO2 eq.]	1,78E+01	2,10E+00	2,13E+00	1,27E+00	9,12E-03	9,64E-02	5,41E-01	2,01E-01	-1,17E+00		

Reading example: $9.0 \text{ E}-03 = 9.0 \cdot 10^{-3} = 0.009$

Biogenic content	Biogenic content								
Parameter	Unit	A1-A3							
Biogenic carbon content in product	kg	0,00E+00							
Biogenic carbon content in the accompanying packaging	kg	6,90E-02							

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

Finnish wind-power and Solar PV, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess(A3).

Data source	Amount	Unit
Sphera Professional Database 2023 Edition	0,02	CO ₂ -eqv/kWh

Dangerous substances

Na	Name CAS i	10.	Amount
	The product contains no substances given by the REACH Candidate as hazardous waste (Avfallsforskiften, Annex III), see table.	ist or the Norwegia	n priority list. The product is classified
	The product contain dangerous substances, more then 0,1% by weigh Norwegian Priority list, see table.	t, given by the RE	ACH Candidate List or the
	The product contains substances given by the REACH Candidate list weight.	or the Norwegian	oriority list that are less than 0,1 % by
✓	Ine product contains no substances given by the REACH Candidate	ist or the Norwegia	in priority list

Guarantees of origin from the use of electricity in the manufacturing phase

Where guarantees of origin is applied in stead of national production mix – the electricity for the manufacturing prosess (A3) shall be stated clearly in the EPD per functional unit.

Electricity source	Foreground / core [kWh]	GWPtotal [kg CO2 - eq/kWh]	SUM [kgCO2 - eq]Unit
Amount of guarantee of origin electricity used in the foreground (Wind power)	2,45	0,01	0,03
Amount of guarantee of origin electricity used in the foreground (Solar PV)	0,40	0,04	0,02
Amount of residual mix electricity used in the foreground	0	0	0

The guarantee of origin utilized in this EPD is provided by Helen Ltd, with a validity period between 1.1.2022 – 31.12.2023. The origin of elerctricity is Nordic Wind-Electricity. The electricity derived from solar PV is generated by Kingspans' own PV system. Guarantees of origins was not stated in the EPD for the dataset from upstream activities (A1).

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A2:2019/AC:2021	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Westberg. H; Silfverstrand. N	LCA-report for Paroc stonewool sandwich panels. Report no. XXXXX Ramboll Sweden AB, Gothenburg, Sweden.
PCR 010 version 4.0 (04 2019)	Product category rules Part B for building boards
Ecoincent v3.8	Swiss centre of life cycle inventories, www.ecoinvent.ch
Sphera 2023 Professional Database	http://www.gabi-software.com/international/databases/gabi-databases/professional/, ts 10.0.1.92 incl. databases 2023 Edition
GPI EPD Norge	General Programme Instructions from the Norweigian EPD Foundation (2019). Updated
PCR building products	Product category rules part A ver 2.0 for Construction products and services

	Program operator	Phone:	+47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation		
@ cpu-norway	P.O. Box 5250 Majorstuen, 0303	e-mail:	post@epd-norge.no
Global Program Operator	Norway	web	www.epd-norge.no
	Publisher	Phone:	+47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation		
	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
Global Program Operator	Norway	web	www.epd-norge.no
Paroc	Owner of the declaration	Phone:	+46 706353537
X Panel	Kingspan OY / Paroc panel systems Halmeenkatu 7, 287 00 Kankaanpää	e-mail:	eric.henningsson@parocpanels.com
System		web	www.parocpanels.com
	Author of the Life Cycle Assessment	Phone:	+46 10 615 33 27
RAMBOLL	Hannes Westberg		
	Niclas Silfverstrand	e-mail:	niclas.silfverstrand@ramboll.se
		web	www.ramboll.se