

EPD

Environmental Product Declaration

NAL – MV indoor air switch-disconnector

Production site: Przasnysz, Poland

The Norwegian EPD Fo	oundation				
ISSUE DATE	oundation				
			ISSUE DATE		
2023-11-23					
STATUS SECURITY LEVEL					
Approved Public					
ABB DOCUMENT ID	REV.	LANG.	PAGE		
PR23-TC-003 C EN 1/19					
/	Approved ABB DOCUMENT ID	Approved Public ABB DOCUMENT ID REV.	Approved Public ABB DOCUMENT ID REV. LANG.		

EPD Owner	ABB Switzerland Ltd, Group Technology Manag	ement
Organization No.	CHE-101.538.426	
Manufacturer name	ABB Sp. Z o.o.	
and address	Leszno 59, 06-300 Przasnysz, Poland	
Company contact	Seila Rodriguez-Vilches – seila.rodriguez-vilche Sustainability Product Manager	s@ch.abb.com
Program operator	The Norwegian EPD Foundation	
Program operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	
	phone: +47 23 08 80 00, email: post@epd-norg	e no
Declared product	NAL – MV Indoor Air Switch-Disconnector	
Product	The NAL is able to extinguish electric arcs and	enables high switching capacity
description	they represent breaking element for applicatio transformer compact substations. The main ar switch-disconnectors in medium voltage netw	ns in enclosed switchgear and eas of application of NAL are as line
Functional unit	The functional unit of this study is to carry, and	
	of 24 kV and effective time rate (use rate) is 30 the load is 50%, during a service life of 20 year	% considering that during this time
Reference flow	A single NAL-H 24-6K with pole distance 235mr including g packaging.	n (P235) switch-disconnector,
CPC code	46211 - Electrical apparatus for switching or pr	otecting electrical circuits. or for
	making connections to or in electrical circuits,	
Independent	Independent verification of the declaration and	
verification		
	🗆 INTERNAL 🛛 EXTERNAL	
	Independent verifier approved by EPD-Norge: I	Elisabet Amat
	15	
	9101	
	Signature: DC	
Approved by	Håkon Hauan, CEO EPD-Norge	
Approved by	-	
	Signature: Hakan Haugu	
	Makin Maurany	
Reference PCR	EN 50693:2019 – Product Category Rules for Li	e Cycle Assessments of Electronic
	and Electrical Products and Systems.	
	EPDItaly007 – Electronic and Electrical Product	· · · · · ·
	EPDItaly012 – Electronic and Electrical Product	s and Systems – Switches, Rev. 0,
Drogram	2020/03/16.	anaral Dragramma Instructions 2010
Program	The Norwegian EPD Foundation/EPD-Norge, G	eneral Programme instructions 2019,
instructions	Version 3.0, 2019/04/24. This EPD is based on the LCA study described i	n the ICA report PP22-TC 002
LCA study EPD type	Specific product	The LCA report FR23-TC-002.
EPD type EPD scope	Cradle-to-grave	
Product RSL	20 years	
Geographical	Manufacturing (suppliers): Manufacturing (A	BB): Downstream:
representativeness	Global Poland	Europe
Reference year	2022	
LCA software	SimaPro 9.5 (2022)	
LCI database	Ecoinvent v3.9.1 (2022)	
Comparability	EPDs published within the same product categ	ory, though originating from different
	programs, may not be comparable. Full conform	
	comparability only when all stages of a life cycl	e have been considered. However,
	variations and deviations are possible.	
Liability	The owner of the declaration shall be liable for	
	evidence. EPD-Norge shall not be liable with re	spect to manufacturer, life cycle
	assessment data, and evidence.	

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	с	EN	2/19
© Copyright 2023 ABB. All rights reserved.					

Contents

Sustainability at ABB	4
General Information	5
Constituent Materials	6
LCA Background Information	8
Inventory Analysis	11
Environmental Indicators	13
Extrapolation rules	15
Sensitivity analysis	
Additional Environmental Information	
References	19

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	PR23-TC-003	с	EN	3/19	
© Copyright 2023 ABB. All rights reserved.						

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation, and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels.

At ABB, we actively contribute to a more sustainable world, leading by example in our own operations and partnering with customers and suppliers to enable a low-carbon society, preserve resources, and promote social progress.

Learn more on our website <u>global.abb/group/en/sustainability</u> or scan the QR code.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	с	EN	4/19
© Copyright 2023 ABB. All rights reserved.					

General Information

The products declared in this Environmental Product Declaration includes the following devices of the Product Family, including packaging:

- NAL 12-6/ NAL-H 12-6
- NAL 12-12
- NAL 17-6/ NAL-H 17-6
- NAL 24-6/ NAL-H 24-6
- NAL 36-10

NAL-H is switch-disconnector designed for operation in harsh operating conditions. In this version, insulators have longer creepage distance and they are made of indoor epoxy more resistant against water condensation conditions. The insulators in standard NAL version are made of BMC.

General technical specifications of the product NAL are presented below.

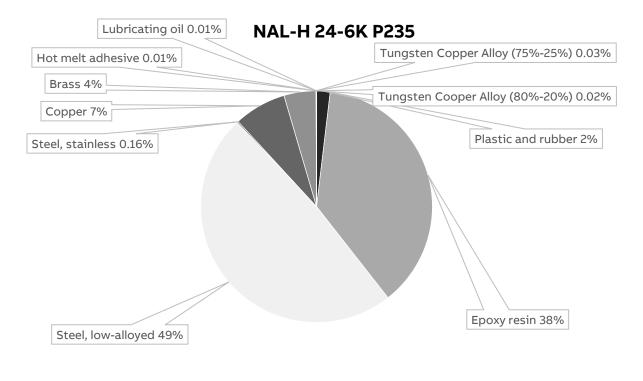
	Technical information					
	Unit	NAL 12- 6/ NAL-H 12-6	NAL 12- 12	NAL 17- 6/ NAL-H 17-6	NAL 24-6/ NAL-H 24-6	NAL 36-10
Rated voltage	kV	12	12	17	24	36
Rated current	А	630	1250	630	630	1000
Rated continuous current	А	630	1150	630	630	1000
Rated short-circuit making current	kA	67	67	52	52	52
Rated peak withstand current	kA (peak)	82	82	82	82	82
Rated power-frequency withstand voltage	kV	28 / 32	28 / 32	38/45	50 / 60	80 / 88
Rated lightning impulse withstand voltage	kV	75 / 85	75 / 85	95 / 110	125 / 145	170 / 195

The reference flow is a single NAL-H 24-6K P235 device, because this configuration was the most produced in 2022.

The NAL is manufactured by ABB Sp. z o.o. Poland manufacturing site located in Przasnysz.

The manufacturing site is certified according to the following standards:

- ISO 9001:2015 Quality Management Systems
- ISO 14001:2015 Environmental Management Systems
- ISO 45001:2018 Occupational Health and Safety Management Systems


The NAL family is produced in two different geographical locations in Przasnysz, Poland and in 10th of Ramadan City, Egypt. The main production site is the plant in Przasnysz, where all configurations of the NAL family are produced, and these relays are sold globally. The plants in 10th of Ramadan City focus on local markets and production includes only a few configurations of the NAL family. However, in this EPD, only the NAL Family manufactured Przasnysz, Poland is considered in the main scenario. Additional scenarios are considered in the Sensitivity Analysis chapter, including NAL manufactured in Egypt.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	PR23-TC-003	С	EN	5/19	
© Copyright 2023 ABB. All rights reserved.						

Constituent Materials

The NAL-H 24-6K P235 weighs 47.03 kg, and the constituent materials	are presented below.
---	----------------------

Туре	Material	Weight [kg]	Weight %
	Polybutylene	0.050	0.106
	Polyamide	0.552	1.174
	Polyester	0.001	0.002
Plastics	Polyoxymethylene	0.165	0.351
	Polypropylene	0.113	0.240
	PTFE Teflon	0.008	0.017
	Epoxy resin	17.652	37.533
Metals	Steel, low-alloyed	22.837	48.557
	Steel, stainless	0.076	0.162
Metals	Copper	3.437	7.308
	Brass	2.106	4.478
	Tungsten Copper Alloy (75%-25%)	0.013	0.028
Other	Tungsten Cooper Alloy (80%-20%)	0.010	0.021
Other	Lubricating oil	0.006	0.013
	Hot melt adhesive	0.003	0.006
Total		47.03	100

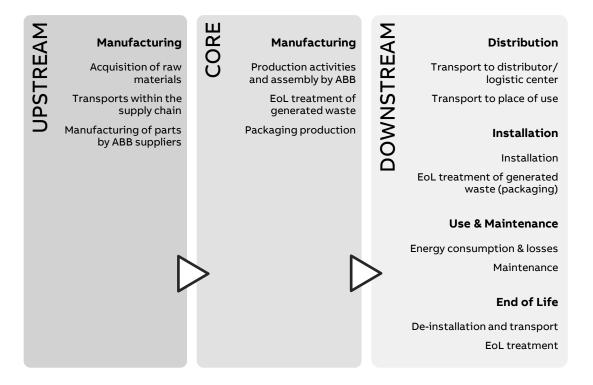
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	с	EN	6/19

The packaging materials weighs 11.058 kg, and the constituent materials are presented below.

Description	Material	Weight [kg]	Weight %
Packaging box	Cardboard	7.86	71.08
Pallet	Wood	2.888	26.12
Manuals	Paper	0.31	2.80
Total		11.058	100

CURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
blic	PR23-TC-003	с	EN	7/19
b	lic			

LCA Background Information


Functional Unit

The functional unit of this study is to carry, and switch current, at nominal voltage of 24 kV, during a service life of 20 years and with an effective time rate (use rate) is 30% considering that during this time the load is 50%. The reference flow is a single NAL-H 24-6K P235 device, including packaging.

Note, the reference service life (RSL) of 20 years is a theoretical period selected for calculation purposes only – this is not representative of the minimum, average, nor actual service life of the product.

System Boundaries

The life cycle assessment of the NAL, an EEPS (Electronic and Electrical Products and Systems), is a "cradle-to-grave" analysis. The figure below shows the product life cycle stages and the information considered in the LCA.

In terms of exclusions from the system boundary, according to PCR, capital goods such as machinery, tools, buildings, infrastructure, packaging for internal transports, and administrative activities, which cannot be allocated directly to the production of the reference product, are excluded.

Infrastructures, when present, such as in processes deriving from the ecoinvent database, have not been excluded. Scraps for metal working and plastic processes are also included when already defined in ecoinvent.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	с	EN	8/19
© Copyright 2023 ABB. All rights reserve	d.	·			

Temporal and geographical boundaries

In terms of temporal boundaries, all primary data collected from ABB are from 2022, which is considered a representative production year. Secondary data are provided by ecoinvent v3.9.1 which was released in 2022.

In terms of geographical boundaries, the materials and components used in the production of the NAL are globally sourced. The supply chains are often complex and can extend across multiple countries and continents. Therefore, materials and background processes with global representativeness are selected from ecoinvent. Thus, a conservative approach is adopted.

Data quality

Both primary and secondary data are used. The main sources for primary data are the bill of materials and technical drawings, while site specific foreground data are provided by ABB.

For all processes for which primary data are not available, generic data originating from the ecoinvent v3.9.1 database, "allocation, cut-off by classification", are used. The database Industry Data 2.0 is also used for Polyoxymethylene (POM)/EU-27 which is not available by ecoinvent. The LCA software used for the calculations is SimaPro 9.5.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. In accordance with the PCR EPDItaly007, the environmental impact indicators are determined by using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019.

Allocation rules

The utility consumption and waste generation of ABB's plant in the manufacturing stage are allocated to the production of one NAL by using allocation rules. Since the factory produces several products (apparatus and switchgears), only a part of the environmental im-pact has been allocated to the NAL production line. Surface area of each product line was chosen as partition coefficient, as most accurate representation of manufacturing and wastes share. The amounts allocated to the production of NAL were multiplied by production volumes.

For the end-of-life allocation, the "Polluter Pays" principle is adopted according to what is defined in the CEN/TR 16970 standard, as required by the PCR EPDItaly007. This means, waste treatment processes are allocated to the product system that generates the waste until the end-of-waste state is reached. The environmental burdens of recycling and energy recovery processes are therefore allocated to the product system that generates the waste, while the product system that uses the exported energy and recycled materials receives it burden-free. However, the potential benefits and avoided loads from recovery and recycling processes are not considered because it is not required by EPDItaly007.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	С	EN	9/19
© Copyright 2023 ABB. All rig					0720

Cut-off criteria

According to Standard PCR EPDItaly012 , the cut-off criteria can be set to a maximum of 2 % of total weight of the device.

The raw material life cycle stage includes the extraction of raw materials. No cut-off rules were used to hide significant impact.

In this LCA, sticking labels on the packaging have been excluded as their weights are negligible small compared to the whole device.

Surface treatments like silver, nickel and zinc plating have been considered in the LCA model.

status	SECURITY LEVEL	DOCUMENT ID.	REV.	lang.	PAGE
Approved		PR23-TC-003	C	EN	10/19

Inventory Analysis

Manufacturing stage

As presented in chapter Constituent Materials, low-alloyed steel and epoxy resin are the most frequently used materials, followed by cooper and brass.

Using the ecoinvent database, the steels are mainly modelled with *Steel, low-alloyed {GLO}} market for* and the epoxy resin is mainly modelled with *Epoxy resin, liquid {RoW} market for*. To account for the production activities of metal and plastic parts, *Metal working, average* and *Injection molding* are the most frequently used processes. Surface treatments are also included, and the most common surface treatments are *Zinc coat, coils {GLO} market for*.

Supply chain transport is added as far as data is available between ABB, the suppliers, and sub-suppliers. Only primary suppliers are considered. The rest of the transports are assumed to already be included in ecoinvent's "market for"-processes.

For the ABB manufacturing site, which is considered in the core manufacturing stage, utility consumption and waste generation are allocated to the production of one NAL- H 24-6K P235 according to the defined allocation rules. The packaging materials with the product are also considered in the core manufacturing stage.

Distribution

The transport distance from the ABB manufacturing site to the site of installation is assumed to be 300 km over land, as suggested by the PCR EPDItaly012, as the actual distance is unknown. The selected ecoinvent process is *transport, freight, lorry 16-32 metric ton, EURO4 [RER]*.

Installation

The installation phase only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the packaging materials used.

The end-of-life scenario for packaging materials is based on *Packaging waste by waste management operations* by Eurostat (2020), which is representative for Europe. A transport distance of 100 km by lorry is assumed as the actual location of disposal is unknown.

Use

The use stage considers the reference power consumption over the reference service life of 20 years as defined in the functional unit. This is calculated using the following formula, according to PCR:

$$E_{use}[kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000} = \frac{P_{use} * 8760 \text{ hours } * 20 \text{ years } * \alpha}{1000}$$

$$P_{use}[W] = 3 * R * (0,5 * I)^2 = 31.256 W$$

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	С	EN	11/19
© Copyright 2023 ABB. All I	rights reserved.	1			

$$E_{use}[kWh] = \frac{31.256 * 8760 * 20 * 0.3}{1000} = 1642.809 \, kWh$$

Where:

- *E*_{use} = Total energy use over the reference service life
- *P*_{use} = Reference power consumption in watts
- *RSL* = Reference Service Life in years 20 years
- α = Use time rate 0,3
- I = Nominal current 630 A
- R = Internal resistance 0.000105 Ω
- 8760 is the number of hours in a year

Because this product is sold globally and is not limited to any specific country, the latest energy mix of the European Union is adopted as suggested by the standard EN 50693. The emission factor of the energy mix is presented below.

Energy mix	Source	Amount	Unit
Electricity, medium voltage {RER} market group for electricity, medium voltage Cut- off, S	Ecoinvent v3.9.1	0.368	kg CO₂-eq./kWh

The maintenance happens during the use phase, but it implies manual and visual activities only, from the environmental impacts point of view can be omitted from the analysis.

End of life

Decommissioning of the product only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the product.

The end-of-life scenario for the product is based on IEC/TR 62635 (Annex D.3), which is representative for Europe. A conservative approach is adopted by using the rates given for materials that go through a separation process, and this includes the losses in the separation processes. A transport distance of 100 km by lorry is assumed as the actual location of disposal is unknown.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	С	EN	12/19
© Copyright 2023 ABB. All	rights reserved.	· · ·			

∬≓ Environmental Indicators

NAL-H 24-6K P235

			Cradle-	to-gate				
					Cradle-t	o-grave		
Impact	Unit	Total	UPSTREAM	CORE		DOWNS	STREAM	
category	Unit	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
GWP – total	kg CO₂ eq.	9.273E+02	2.902E+02	2.922E+01	3.263E+00	4.266E+00	5.940E+02	6.376E+00
GWP – fossil	kg CO₂ eq.	8.893E+02	2.858E+02	2.368E+01	3.258E+00	2.748E-01	5.715E+02	4.822E+00
GWP – biogenic	kg CO₂ eq.	3.611E+01	4.095E+00	5.386E+00	2.967E-03	3.991E+00	2.108E+01	1.548E+00
GWP – luluc	kg CO₂ eq.	1.931E+00	3.413E-01	1.526E-01	1.593E-03	1.438E-04	1.430E+00	5.927E-03
ODP	kg CFC-11 eq.	5.359E-05	4.267E-05	5.251E-07	7.136E-08	6.312E-09	1.027E-05	5.056E-08
AP	mol H+ eq.	7.694E+00	4.672E+00	1.168E-01	1.349E-02	1.486E-03	2.869E+00	2.163E-02
EP – freshwater	kg P eq.	8.980E-01	3.624E-01	1.230E-02	2.296E-04	3.062E-05	5.215E-01	1.484E-03
EP – marine	kg N eq.	1.009E+00	4.411E-01	4.232E-02	5.147E-03	2.364E-03	5.101E-01	7.668E-03
EP – terrestrial	mol N eq.	1.027E+01	5.331E+00	3.174E-01	5.494E-02	5.906E-03	4.498E+00	5.760E-02
POCP	kg NMVOC eq.	3.283E+00	1.692E+00	1.019E-01	1.975E-02	2.367E-03	1.450E+00	1.798E-02
ADP – minerals and metals	kg Sb eq.	5.527E-02	5.403E-02	6.402E-05	1.053E-05	8.203E-07	1.137E-03	3.607E-05
ADP – fossil	MJ, net calorific value	1.777E+04	4.210E+03	3.031E+02	4.649E+01	3.806E+00	1.316E+04	5.290E+01
WDP	m³ eq.	2.466E+02	1.056E+02	5.726E+00	1.888E-01	4.881E-02	1.344E+02	6.410E-01

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	С	EN	13/19
© Copyright 2023 ABB. All ri	ghts reserved.		I		

ENVIRONMENTAL PRODUCT DECLARATION

			Cradle-	to-gate				
					Cradle-t	o-grave		
Resource use	Unit	Total	UPSTREAM	CORE		DOWNS	STREAM	
parameters	ome	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
PENRE	MJ, low cal. value	1.751E+04	3.958E+03	3.032E+02	4.649E+01	3.806E+00	1.315E+04	5.290E+01
PERE	MJ, low cal. value	2.992E+03	4.104E+02	5.045E+01	7.215E-01	7.695E-02	2.526E+03	5.098E+00
PENRM	MJ, low cal. value	2.513E+02	2.513E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
PERM	MJ, low cal. value	1.026E+02	0.000E+00	1.026E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
PENRT	MJ, low cal. value	1.777E+04	4.210E+03	3.032E+02	4.649E+01	3.806E+00	1.315E+04	5.290E+01
PERT	MJ, low cal. value	3.095E+03	4.104E+02	1.531E+02	7.215E-01	7.695E-02	2.526E+03	5.098E+00
FW	m³	1.364E+01	2.999E+00	3.286E-01	6.626E-03	1.647E-03	1.028E+01	2.446E-02
MS	kg	1.454E+01	8.327E+00	6.216E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
RSF	МЈ	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
NRSF	MJ	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PENRM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

			Cradle-	to-gate	1			
					Cradle-t	o-grave	_	
Waste			UPSTREAM	CORE	DOWNSTREAM			
production indicators	Unit	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
HWD	kg	4.563E-02	2.716E-02	1.292E-03	2.960E-04	2.273E-05	1.666E-02	1.946E-04
NHWD	kg	1.325E+02	6.309E+01	7.294E+00	2.272E+00	2.077E+00	3.608E+01	2.169E+01
RWD	kg	1.018E-01	5.620E-03	3.250E-04	1.511E-05	1.487E-06	9.575E-02	1.016E-04
MER	kg	1.090E+01	0.000E+00	8.403E+00	0.000E+00	1.578E+00	0.000E+00	9.226E-01
MFR	kg	4.540E+01	6.555E+00	5.214E+00	0.000E+00	7.580E+00	0.000E+00	2.605E+01
CRU	kg	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
ETE	МЈ	4.466E+01	0.000E+00	3.440E+01	0.000E+00	6.688E+00	0.000E+00	3.578E+00
EEE	MJ	2.481E+01	0.000E+00	1.911E+01	0.000E+00	3.716E+00	0.000E+00	1.988E+00

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	С	EN	14/19
© Copyright 2023 ABB. All ri					

$\bigoplus_{r \to m}$ Extrapolation rules

All the analyzed configurations have the same main functionality, product standards and manufacturing technology, so extrapolation rules are established according to EN 50693. The main differences in the NAL family include:

- insulators from indoor epoxy resin (with H letter) or BMC (Bulk Molding Compound)
- current carrying parts different types and sizes depending on the current and voltage values.
- mechanism K(snap-action mechanism) or A(stored spring energy mechanism)
- frame and shaft with the following pole distances:
 - 12 kV pole distance 150 mm, 170 mm and 210 mm
 - 17 kV pole distance 170 mm and 210 mm
 - 24 kV pole distance 235 mm and 275 mm
 - 36 kV pole distance 360 mm

Rated currents are from 400 to 1250 A depending on the configuration.

The different life cycle stages can be extrapolated to other configurations of the same product by applying a rule of proportionality to the parameters, presented in the following Table. To calculate the environmental impact Indicators for each NAL configuration, the result for the reference product NAL-H 24-6K P235 should be multiplied by the factor from the following table.

Example for calculation of GWP-total for NAL-H 12-6K P150 configuration in different stages:

- GWP-total in Total stage = (9.23E+02 · 0.715) = 6.60E+02 kg CO2-eq
- GWP-total in Installation stage = (4.27E+00 · 0.695) = 2.97E+00 kg CO2-eq

GWP-total [kg CO2-eq] – Extrapolation factor								
		UPSTREAM	CORE		DOWNS	STREAM		
Configuration	Total	Manufac	turing	Distribution	Installation	Use and maintenance	End-of-life	
NAL-H 12-6K P150	0.714	0.693	0.939	0.682	0.695	0.714	0.698	
NAL-H 12-6K P210	0.724	0.723	0.939	0.716	0.695	0.714	0.740	
NAL-H 12-6A P150	0.720	0.710	0.939	0.710	0.695	0.714	0.734	
NAL-H 12-6A P210	0.725	0.725	0.939	0.746	0.695	0.714	0.775	
NAL 12-6K P150	0.680	0.581	0.939	0.639	0.695	0.714	0.841	
NAL 12-6K P170	0.683	0.591	0.939	0.650	0.695	0.714	0.855	
NAL 12-6K P210	0.690	0.611	0.939	0.673	0.695	0.714	0.883	
NAL 12-6A P150	0.686	0.598	0.939	0.669	0.695	0.714	0.877	
NAL 12-6A P170	0.689	0.608	0.939	0.680	0.695	0.714	0.891	
NAL 12-6A P210	0.695	0.627	0.939	0.703	0.695	0.714	0.918	
NAL 12-12K P150	0.954	0.645	0.939	0.672	0.695	1.111	0.879	

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	с	EN	15/19
© Copyright 2023 ABB. All rights reserve	d.	·			

NAL 12-12K P170	0.958	0.655	0.939	0.683	0.695	1.111	0.893
NAL 12-12K P210	0.964	0.674	0.939	0.706	0.695	1.111	0.921
NAL 12-12A P150	0.960	0.661	0.939	0.701	0.695	1.111	0.915
NAL 12-12A P170	0.963	0.671	0.939	0.712	0.695	1.111	0.929
NAL 12-12A P210	0.970	0.691	0.939	0.735	0.695	1.111	0.956
NAL-H 17-6K P170	0.988	0.965	1	0.959	1	1	0.950
NAL-H 17-6K P210	0.995	0.984	1	0.981	1	1	0.977
NAL-H 17-6A P170	0.994	0.982	1	0.991	1	1	0.990
NAL-H 17-6A P210	1.001	1.002	1	1.014	1	1	1.017
NAL 17-6K P170	0.935	0.790	1	0.900	1	1	1.224
NAL 17-6K P210	0.942	0.809	1	0.922	1	1	1.251
NAL 17-6A P170	0.942	0.808	1	0.932	1	1	1.264
NAL 17-6A P210	0.948	0.828	1	0.955	1	1	1.291
NAL-H 24-6K P235	1	1	1	1	1	1	1
NAL-H 24-6K P275	1.007	1.022	1	1.026	1	1	1.031
NAL-H 24-6A P235	1.006	1.018	1	1.032	1	1	1.040
NAL-H 24-6A P275	1.013	1.041	1	1.058	1	1	1.071
NAL 24-6K P235	0.947	0.825	1	0.941	1	1	1.274
NAL 24-6K P275	0.954	0.848	1	0.967	1	1	1.305
NAL 24-6A P235	0.953	0.844	1	0.974	1	1	1.314
NAL 24-6A P275	1.040	1.121	1	1.000	1	1	1.345
NAL 36-10K P360	1.352	1.434	-0.592	2.125	6.270	1.368	1.432
NAL 36-10A P360	1.359	1.454	-0.592	2.162	6.270	1.368	1.476

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	с	EN	16/19
© Copyright 2023 ABB. All rights reserve	d.	1	1	1	1

Sensitivity analysis

NAL sold for substation applications

A sensitivity analysis is conducted to understand how the impact category "GWP – total" varies for NAL-H 24-6K P235 sold for substation application. Approximately 80% of NAL-H 12-6, NAL-H 17-6 and NAL-H 24-6 switch disconnectors are sold for substation applications. NAL switch disconnectors are installed in substations and work with transformers with power ranging from 50 kVA to 1600 kVA. The calculation of energy consumption depends on the load of NAL. The use stage is changing, the results are presented in the following table.

	GWP-total [kg CO ₂ -eq]							
6	T I	UPSTREAM	CORE	DOWNSTREAM				
Scenario	Total	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life	
Declared scenario Use stage: Power use depending on the rated current	9.27E+02	2.90E+02	2.92E+01	3.26E+00	4.27E+00	5.94E+02	6.38E+00	
Transformer application Use stage: Power use depending on the transformer power	3.33E+02	2.90E+02	2.92E+01	3.26E+00	4.27E+00	2.60E-02	6.38E+00	

Manufacturing site in Egypt

This chapter presents the results of a sensitivity analysis in different scenarios, to understand how the impact category "GWP – total" varies for the switch-disconnectors NAL that are produced and sold in different geographical locations. The plant in Egypt focus on local markets and production includes two configuration of the NAL family, NAL- H 12-6K P170 and NAL-H 24-6K P275.

	GWP-total [kg CO2-eq]							
6	Tatal	UPSTREAM	CORE		DOWNSTREAM			
Scenario	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life	
NAL-H 12 P170 Manufacturing: Egypt Use stage: Africa	1.12E+03	2.04E+02	3.71E+01	2.27E+00	2.96E+00	8.74E+02	4.54E+00	
NAL-H 24 P275 Manufacturing: Egypt Use stage: Africa	1.59E+03	3.15E+02	3.88E+01	3.40E+00	4.27E+00	1.22E+03	6.96E+00	

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	С	EN	17/19

Additional Environmental Information

Recyclability potential

The recyclability potential of the NAL is calculated by dividing "MFR: material for recycling" in the end-of-life stage by the total weight of the product. As a result, the recyclability potential of the product is 78.16%

Greenhouse gas emissions from the use of electricity in the manufacturing phase

Production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process.

Energy mix	Data source	Amount	Unit
Polish energy mix; <i>Electricity, medium</i> voltage {PL} market group for Cut-off, S	Ecoinvent v3.9.1	0.964	kg CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

Carbon footprint has not been worked out for the product.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	PR23-TC-003	с	EN	18/19
© Copyright 2023 ABB. All rights reserved	d.	•			

References

Jaśkiewicz K. (2023). <i>NAL: Life Cycle Assessment Report</i> (Report No. PR23-TC-002, rev. A). ABB
Switzerland Ltd, Group Technology Management.
ecoinvent. ecoinvent v3.9.1 (2022). https://ecoinvent.org/the-ecoinvent-database/data-
releases/ecoinvent-3-9-1/
European Committee for Standardization. (2019). Product category rules for life cycle
assessments of electronic and electrical products and systems (EN 50693:2019).
European Committee for Standardization. (2019). Sustainability of constructions - Environmental
product declarations (EN 15804:2012+A2:2019).
Eurostat. (2020). Packaging waste by waste management operations.
https://ec.europa.eu/eurostat/databrowser/view/ENV_WASPAC/default/table?lang=en
ICMQ S.p.A. (2023). PCR EPDItaly007-Electronic and electrical products and systems, rev. 3.0
(2023-01-13). EPDItaly. https://www.epditaly.it/en/view-pcr/
ICMQ S.p.A. (2020a). PCR EPDItaly012 - Electronic and electrical products and systems - switches,
rev. 0 (2020-03-15). EPDItaly. https://www.epditaly.it/en/view-pcr/
ICMQ S.p.A (2020b). Regulations of the EPDItaly Programme Regulations, rev. 5.2 (2020-02-16).
EPDItaly. https://www.epditaly.it/en/wp-content/uploads/2016/12/EPDITALY-
Regulament_rev-5.2_EN.pdf
International Electrotechnical Commission. (2012). Guidelines for end-of-life information provided
by manufacturers and recyclers and for recyclability rate calculation of electrical and
electronic equipment, Edition 1.0 (2012-10-1) (IEC/TR 62635).
International Organization for Standardisation. (2006). Environmental management - Life cycle
assessment - Principles and framework (ISO Standard No. 14040:2006).
https://www.iso.org/standard/37456.html
International Organization for Standardisation. (2006). Environmental management - Life cycle
assessment - Requirements and guidelines (ISO Standard No. 14044:2006).
https://www.iso.org/standard/38498.html
PRé Sustainability. (2022). SimaPro (version 9.5) [computer software]. https://pre-
sustainability.com/solutions/tools/simapro/
SeaRates. (2022). Shipping Distances & Time Calculator.
https://www.searates.com/services/distances-time
The Norwegian EPD Foundation/EPD-Norge. (2019). General Programme Instructions 2019,
Version 3.0 (2019-04-24) https://www.end-norge.no/getfile.nhp/1340010-

Version 3.0 (2019-04-24). https://www.epd-norge.no/getfile.php/1340010-1685100696/Dokumenter/GPI%20Det%20norske%20EPD%20programmet%20approved %20240419%20-%20ver3%20updated%20250523.pdf

	Program Operator an	nd publisher				
C epd-norge	The Norwegian EPD F	oundation	Ph.	+47 23 08 8	30 00	
The Norwegian EPD Foundation	Post Box 5250 Majors	stuen,	email	post@epd	-norge.n	0
	0303 Oslo, Norway		web	www.epd-i	norge.no	
	Owner of the declara	tion				
	ABB Swizerland Ltd, O	Group				
	Technology Managen	nent				
	Brown Boveri Straße	6, 5400	wab	www.abb.o		
	Baden, Switzerland		web	www.app.c	lom	
	Author					
	Karolina Jaśkiewicz		Ph.	+48 728 40	1724	
	ABB Poland		email	karolina.jas	kiewicz@	pl.abb.cor
	Leszno 59, 06-300 Pr	zasnysz	web	www.abb.o	com	

© Copyright 2023 ABB. All r			-		,
Approved	Public	PR23-TC-003	с	EN	19/19
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE