

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

Publisher:

Declaration number: Registration number:

ECO Platform reference number:

Issue date: Valid to: Hunton Fiber AS Vhe Þorwegian ÒPÖ Øoundation

Vhe Þorwegian ÒPÖ Øoundation NEPD-2286-1041-EN

NEPD-2286-1041-EN NEPD-2286-1041-EN

06.07.2020 - Rev. 10.11.2023

06.07.2025

Hunton Nativo® Y ood Øbre ÓlownËn Insulation

Hunton Fiber AS

www.epd-norge.no

General information **Product:** Owner of the declaration: Punton Þatiço® Y ood Øbre ÓlownËn Insulation Hunton Fiber AS Ôontact person: Thomas Løkken Phone: +47 815 10 033 e-mail: teknisk@hunton.no **Program operator:** Manufacturer: Vhe Þorwegian ÓPÖ Øoundation **Hunton Fiber AS** PbÈ5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no **Declaration number:** Place of production: NEPD-2286-1041-ÒÞ Gjøvik, Þorwa **ECO Platform reference number:** Management system: ISO 50001:2011 ISO 9001:2015 PEFC ST 2002:2013 This declaration is based on Product Category Rules: Org. no.: 964 014 256 CEN Standard EN 15804 serces as core PCR NPCR 012 Insulation materials, v.2 (06/2018). Statement of liability: Issue date: Vhe owner of the declaration shall be liable for the 06.07.2020 - Rev. 10.11.2023 underl'ing information and ecidenceÈÒPÖ Þorwa' shall not be liable with respect to manufacturer information Elife cî cle assessment data and eçidencesÈ Valid to: 06.07.2025 **Declared unit:** Year of study: 2015-2020 Wodated 2023 Declared unit with option: Comparability: ÒPÖ of construction products mannot be comparable if the do not compl with ÒÞ FÍÌ and are seen in a building conte¢tÈ **Functional unit:** The EPD has been worked out by: F mGwood fibre insulation installed in a thic\ ness of H Maciei Biedacha Lars G. F. Tellnes mm and a thermal resistance of RMF SmŒY from Østfoldforskning AS NORSUS AS cradleËoËgraçe with a reference lifecˆ cle of Î €ˆ earsÈ Mariej Bredadon Las Halleres Østfoldforskning Verification: Independent cerification of declaration and dataÊin accordance with IÙO FI €G KG€F€ internal x e¢ternal **Opproced** Vhird part çerifier Christofer Skaar, PhD Çndependent çerifier approçed bî ÒPÖ Þorwa D (Tanaging Öirector of ÒPÖËporwa^)

Product

Product description:

Punton Þatiço® Y ood Øbre ÓlownËn Insulation is produced bˆ defibration of wood chips which are then mi¢ed with additiçes for structure and fire resistanceÈ Weed for thermal insulation of wallsĒroofs and ceilings in buildingsÈ

Product specification:

Vhe material is homogenous and will not çar with si: eÈ Vhe ŠÔŒcalculations are done based on a densit of HH \q\mathbb{P}nH

Materials	kg	%
Y ood fibreEdr weight	1,09	85,8 %
Y ater	0,10	8,0 %
Amonium phosphate	0,06	5,1 %
Paraffin wa¢	0,01	1,1 %
Total for product	1,27	100,0 %
Y ooden pac∖aging	0,05	
Plastic pac\ aging	0,01	
TotalÊwith pac∖ aging	1,33	

Technical data:

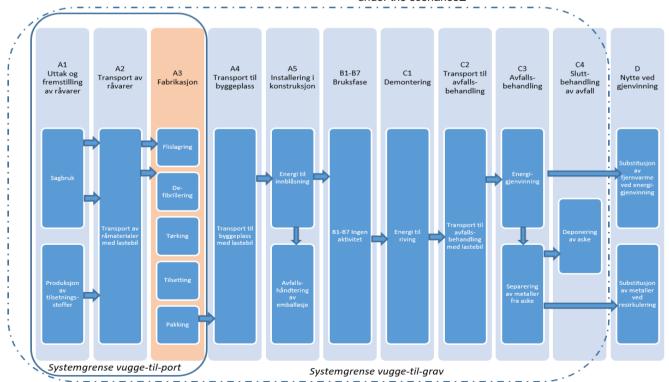
Punton Þatiço® Y ood Øbre Ólowni£n Insulation has a thermal conductiçit of $\not \in A$ \not

Market area:

ÞordicsÊscenarios in ŠÔŒhaçe been calculated based on use in Þorwa^È

Lifecycle:

Reference lifecˆ cle is the same as that of the constructionÊusuallˆ set to Î €ˆ earsÈVhis is based on OBT ØÖVDfor the product and the assumptions thereinÈ


LCA: Calculation Rules

Functional unit:

1 mGwood fibre insulation installed in a thic\ ness of Hì mm and a thermal resistance of RMF SmŒY from cradle to grace with a reference life c^cle of î € earsÈ

System Boundary:

Ølowchart for the entire lifecˆ cle ŒŒÔI Dwith sˆ stem boundaries has been shown in the diagram belowÈT odul Ö has also been included outside the lifecˆ cle with energˆ and material substitution from recˆ clingÊand is elaborated upon under the scenariosÈ

Data quality:

Öata for the production of wood fibre insulation is based on half a ^ear of production in ŒFJÈØor the raw material wood chipsÊit is based on ecoinçent and updated with Þorwegian dataÈVhe remaining data is based on ecoinçent çHĒ Êbut adbusted to improçe representatiçit Èecoinçent çHĒ was launched in ŒFÌ Ê and no data is older than F€ ^earsÈŒ energ ^consumption in database figures are assumed not used as raw materialÈ

Cut-off criteria:

Off important raw materials and all significant energ consumption hace been included EVhe production process for the raw materials and energ flows incolced as cer small amounts Q.FÃ Dhace not been included EVhese cut Eff criteria do not appl for ha: ardous materials and substances E

Allocation:

Œlocation has been made in accordance with proçisions of ÒÞ FÍ Ì € ÈÒlectricitˆ consumption in production has been allocated bˆ specific energˆ consumption for the çarious productsÊwhile remaining energˆ consumptionÊwaterÊwaste and internal transport haçe been allocated bˆ mass across productsÈlmpact on the primarˆ production of recˆcled materials has been allocated to the main product where the material was usedÈn the çalue chain for timberÊeconomic allocation has been usedÈ

Calculation of biogenic carbon content:

Œsorbance and release of carbon dio¢ide from biological origin has been calculated based on ÞÙĒÒÞ FÎ I Ì Í ÆFI È Vhis method is based on the principle of modularitˆ in ÒÞ FÍ Ì ≷ ÆFÆwhere release must be counted in the lifecˆ cle module where it actuallˆ happensÈVhe amount of carbon dio¢ide has been calculated in accordance with ÞÙĒÒÞ FÎ I I JKÆFI ÈVhe net contribution to ÕY P from biogenic carbon is shown for each module on page Ì ÈVimber comes from sustainable forestrˆ and features PÒØÔ certified traceabilitˆ È

LCA: Scenarios and other technical information

Vhe following information describes the scenarios for the modules in the ÒPÖÈ

Two transport scenarios for transport in module A4 haçe been assessed in this EPD. Vhe first scenario assumes a transport distance of G ∈\m with a large truc\ to an intermediate storage. ØurtherÊit is assumed a transport distance of 50 km with a mediumBi: ed truc\. Vhe second scenario assumes transport directl^ to a construction siteÊwith a distance of H€€\m.

Transport from production location to user (A4)

Туре	Ôapacit^ utilisationÊnclÈreturn 🧖 🛭	Vehicle t^pe	Distance km	Øuel t Dnerg [*] consumption	Whit
Ôar	50,3	EURO6, >32 tonn	250	0,024	l/tkm
Ôar	47,8	EURO6, 16-32 tonn	50	0,042	l/tkm
Ôar	50,3	EURO6, >32 tonn	300	0,024	l/tkm

In the construction phaseʀŒ€FÍ HI diesel for blow⊞n and a wastage of Gà is assumedÈY aste treatment of the pac\ aging is also includedÈ

Vhere are no ŠÔO⊞related ençironmental impacts during use

Construction Phase (A5)

	Whit	Value
Œu¢iliar^ materials	m ³	0
Œu¢iliar^ materials	kg	0
Œu¢iliar^ materials	kg	0
Y ater consumption	m ³	0
Òlectricit [^] consumption	MJ	0
Other energ sources Ediesel for blowEn	MJ	0,061
Material loss	kg	0,025
Materials from waste treatment	kg	0,060
Öust in the air	ka	0

Installed products in use (B1)

	Whit	Value
Relevant emissions during use	kg	0

V@] | [å * &c} [| { æ|| ^ | ^ * ã ^ • } [{ æ \$, c^} æ \$ &^ [| | ^] æ ā È

Maintenance (B2)/Repair (B3)

	Unit	Value
Maintenance frequency*	р	0
Maintenance frequency*	kg	0
Ut@r re•[urce•	kg	0
Y ater c[n•u{] ti[n	kg	0
Òlectricity c[n•u{] ti[n	MJ	0
Ut@er ener*y •[urce•	MJ	0
Material I[• •	kg	0

Rep'acea ent (B()/Rencj aticn (B))

	Unit	Value
Üe] lace{ ent frequency*	year	60
Òlectricity	kWh	0
Üe] lace{ ent [f , [rn] art•	0	0

^{*} Value [r ÜÙŠ ÇÜeference Ùerçice ŠifeD

V @] r[åuct @ • n[ener*y[r, ater c[n•u{] ti[n in [] erati[nÈ

9 nergm(B6) anX k ater congi a ption in operation (B7)

	Unit	Value
Y ater c[n•u{] ti[n	m^3	0
Òlectricity c[n•u{] ti[n	kWh	0
ener* y •[urce•	MJ	0
Peatin* effect [ft@eequi] { ent	kW	0

V@] r[åuct can àe • [rteå a• { i¢eå ¸ [[å ¸ a•te at t@ c[n•tructi[n •ite anå { ana*eå ¸ it@ener*y rec[çeryÈ

9nX cZ@Ze (C1, C3, C4)

	Unit	Value
Pa: arå[u∙ ຸa∙te	kg	0
Mi¢eå ¸a∙te Ut@er	kg	1,27
Üecyclin*	kg	0
Üecirculati[n	kg	0
Energy rec[çery	kg	1,27
Ø[r a•te åe][•it	kg	0

Vran•][rt[f, [[å, a•te i• àa•eå [n t@e açera*e åi•tance f[r G€€ in Þ[r, ay anå { a\e• u] Ì Í \{ ÇÜaaåal et alÈÇG€€JDÈ

Transport to k agte a anal ea ent (C2)

Туре	Ôa] acity utili•ati[nÊinclÈreturn ÇÃ [Ve@cle ty[e	DistanceÊkm	Øuel/Òner* y c[n• u{] ti[n	Value (I/t)
Ôar		Un∙1 ecifieå	85	0.027 l/tkm	2.3

V@ *ain• fr[{ e¢][rteå ener* y fr[{ ener* y rec[çery in { unici] al ¸ a•te facilitie• @açe àeen calculateå ¸ it@re] lace{ ent [f P[r, e*ian electricity { i¢ anå P[r, e*ian åi•trict @eatin* { i¢ËÖata f[r electricity { i¢ i• t@ •a{ e a• t@at u•eå in OFFÖJFÊanå åi•trict @eatin* { i¢ i• àa•eå [n t@ GEFÏ] r[åucti] nÈ

BeneZtg anX `caXg VencnX t\ e gngtea Vci nXarieg (D)

	Unit	Value
Substituti[n [f electrical ener* y	MJ	1,6
Substituti[n [f t@er{ al ener* y	MJ	13,3
Ùuà•titutil n [f ra	ka	0

LCA: Resultg

 $V @e re•ult• f[r*l[\grave{a}al], ar{in* in t @e çari[u• { [åule• return a lar*e c[ntri\grave{a}uti[n fr[{ a\grave{a}•[r\grave{a}ance anå relea•e [f\grave{a}i[*enic car\grave{a}[n\grave{E}V@e net c[ntri\grave{a}uti[n fr[{ ài[*enic car\grave{a}[n \grave{E}V@e net c[ntri\grave{a}uti[n fr[{ a\grave{a}=nce ar\^{a}[n eac@{ [åule i• •@], n [n]a*e ì E}}}}}$

Punt[n] r[åuce•] [[å fiàre in•ulati[n at t@ir ne] fact[ry at SkjervenÊày Gjøvik. V@ fact[ry @• n[åirect e{ i••i[n• t[t@e ençir[n{ ent [t@er t@an fr[{ internal tran•][rt. Ùtartin* fr[{ 2023ÊHunton @• acquireå a certificate [f[ri*in, en•urin* t@at electricity c[n•u{ eå at t@e fact[ry•te{• fr[{ rene, aàle ener*y•[urce•ÈV@e result• presenteå in t@• å[cu{ ent i• calculateå àa•eå [n electricity] r[åuceå F€€Ã fr[{ , ater][, erÈHunton i• c[ntinually optimi: in* t@eir] r[åucti[n] r[ce••e• at t@e fact[ry. Ô[n•equentlyÊt i• e¢] ecteå t@at an[t@er reçi•i[n] ft@ere•ult• i• requireå in O€€ÍÈ

Ùy• te																
Úr	[åuct •1	ta* e	Ô[n•¹ in•talla	tructi[n ti[n ∙ta* e				U∙e •t	a* e				Ònå [f life •	ta* e	Benefits and loads beyond the system boundary
Üa, { aterial∙	Transport	Manufacture	Transport	Ô[n•tructi[n in•tallati[n	U•e	Maintenance	Üe] air	Üe] lace{ ent	Üen[çati[n	U] erati[nal ener* y c[n• u{] ti[n	U] erati[nal , ater c[n•u{] ti[n	Öi∙•a•e{ àly	Transport	Y a∙te { ana* e{ ent	Y a∙te f[r final] r[ce∙•in*	Ú[tential f[r recyclin* Ë rec[çeryÉecirculati[n
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Ònçir[n{ ental i{] act										
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7				
GWP	kg CO₂-equiçÈ	-1,84E+00	4,76E-02	4,30E-02	8,51E-02	0,00E+00				
ODP	kg CFC11-equiçl	4,24E-09	8,89E-10	8,10E-10	2,19E-09	0,00E+00				
POCP	kg C ₂ H ₄ -equiçÈ	1,72E-04	7,26E-06	6,62E-06	4,63E-06	0,00E+00				
AP	kg SO₂-equiçÈ	3,62E-03	9,27E-05	8,60E-05	1,32E-04	0,00E+00				
EP	kg PO ₄ 3equiçÈ	2,46E-04	1,30E-05	1,22E-05	1,85E-05	0,00E+00				
ADPM	kg Sb-equiçÈ	2,06E-06	1,41E-07	1,22E-07	8,38E-08	0,00E+00				
ADPE	MJ	3,70E+00	7,07E-01	6,49E-01	2,09E-01	0,00E+00				

Ònçir[n{ ental i{] act										
Parameter	Unit	C1	C2	C3	C4	D				
GWP	kg CO ₂ -equiçÈ	2,59E-04	1,37E-02	2,06E+00	3,37E-04	-1,38E-01				
ODP	kg CFC11-equiç	8,89E-12	2,57E-09	9,46E-10	1,15E-10	-1,59E-08				
POCP	kg C ₂ H ₄ -equivÈ	7,30E-08	1,79E-06	4,00E-06	9,56E-08	-1,86E-04				
AP	kg SO₂-equiçÈ	1,63E-06	5,28E-05	1,20E-04	2,29E-06	-8,67E-04				
EP	kg PO ₄ 3equiv.	1,53E-07	9,30E-06	3,19E-05	4,17E-07	-2,69E-04				
ADPM	kg Sb-ekv	3,06E-08	4,57E-08	3,69E-08	4,53E-10	-9,87E-07				
ADPE	MJ	1,80E-03	2,08E-01	1,30E-01	1,08E-02	-1,63E+00				

^{*}Transport scenario , it@inter{ eåiate •t[ra* e.

ÕY Ú ÕI[àal Y ar{ in* Ú[tentialLUÖÚ Ùtrat[•] @eric [:[ne åe]leti[n][tentialLÚUÔÚ Ú@t[c@e{ ical [:[ne creati[n][tentialLŒÚ Œciåificati[n][tential [f lanå anå , aterLÒÚ Òutr[] @cati[n][tentialLŒÚ Œciåificati[n][tential [f lanå anå , aterLÒÚ Òutr[] @cati[n][tentialLŒÚM Œâi[tic åe]leti[n][tential f[r f[••il re•[urce•LŒŰÚÒ Œâi[tic åe]leti[n]][tential f[r f[••il re•[urce•

^{**}Transport scenario directly t[c[n•tructi[n •ite.

Resource u	ıse					
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7
RPEE	MJ	1,46E+01	1,06E-02	9,56E-03	1,47E+00	0,00E+00
RPEM	MJ	2,17E+01	0,00E+00	0,00E+00	-7,52E-01	0,00E+00
TPE	MJ	3,63E+01	1,06E-02	9,56E-03	7,16E-01	0,00E+00
NRPE	MJ	3,00E+00	7,22E-01	6,62E-01	2,22E-01	0,00E+00
NRPM	MJ	1,11E+00	0,00E+00	0,00E+00	1,04E-02	0,00E+00
TRPE	MJ	4,11E+00	7,22E-01	6,62E-01	2,32E-01	0,00E+00
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m^3	6,16E-03	1,38E-04	1,32E-04	1,56E-04	0,00E+00

Resource u	ıse					
Parameter	Unit	C1	C2	C3	C4	D
RPEE	MJ	4,19E-02	3,00E-03	2,08E+01	1,93E-04	-1,32E+01
RPEM	MJ	0,00E+00	0,00E+00	-2,07E+01	0,00E+00	0,00E+00
TPE	MJ	4,19E-02	3,00E-03	3,94E-02	1,93E-04	-1,32E+01
NRPE	MJ	4,35E-03	2,13E-01	7,29E-01	1,12E-02	-2,09E+00
NRPM	MJ	0,00E+00	0,00E+00	-5,95E-01	0,00E+00	0,00E+00
TRPE	MJ	4,35E-03	2,13E-01	1,34E-01	1,12E-02	-2,09E+00
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-8,08E-04
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m^3	2,31E-06	3,92E-05	3,09E-04	1,28E-05	-1,24E-03

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life	End of life - Waste										
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7					
HW	kg	1,15E-05	4,51E-06	4,12E-06	3,14E-07	0,00E+00					
NHW	kg	6,45E-01	6,31E-02	6,38E-02	2,08E-02	0,00E+00					
RW	kg	3,94E-06	2,24E-07	2,02E-07	1,43E-06	0,00E+00					

End of life - Waste										
Parameter	Unit	C1	C2	C3	C4	D				
HW	kg	4,12E-09	5,42E-07	3,41E-07	4,49E-09	-2,02E-06				
NHW	kg	7,28E-04	1,59E-02	1,61E-02	6,29E-02	-8,28E-02				
RW	kg	4,37E-08	1,44E-06	2,77E-07	6,59E-08	-1,22E-05				

HW Disposed hazardous waste; NHW Disposed non-hazardous waste; RW Disposed radioactive waste

End of life -	End of life - Output										
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7					
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00					
MR	kg	1,32E-02	0,00E+00	0,00E+00	1,21E-02	0,00E+00					
MER	kg	3,58E-04	0,00E+00	0,00E+00	1,40E-03	0,00E+00					
EEE	MJ	2,00E-02	0,00E+00	0,00E+00	3,30E-02	0,00E+00					
ETE	MJ	2,13E-01	0,00E+00	0,00E+00	2,71E-01	0,00E+00					

End of life- Output										
Parameter	Unit	C1	C2	C3	C4		D			
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		0,00E+00			
MR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		0,00E+00			
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00		0,00E+00			
EEE	MJ	0,00E+00	0,00E+00	1,63E+00	0,00E+00		-1,63E+00			
ETE	MJ	0,00E+00	0,00E+00	1,33E+01	0,00E+00		-1,33E+01			

CR Components for reuse, MR Materials for recycling, MER Materials for energy recovery, EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9.0 \text{ E}-03 = 9.0 \cdot 10^{-3} = 0.009$

Additional Norwegian requirements

Greenhouse gas emission from the use of electricity in the manufacturing phase

National consumption mix with import on medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) has been applied for electricity in the manufacturing process (A3).

Data source	Amount	Whit
Ecoinvent v3.5 (2018)	28,4	gram CO ₂ -e uiv./kWh
Electricity 100% water power GOO	8,8	gram CO ₂ -e uiv./kWh

Dangerous	substances
-----------	------------

✓	Vhe product contains no substances given by the UOAOP Oandidate list or the Norwegian priority list
П	Vhe product contains substances given by the ÜÒAÔP Ôandidate list or the Norwegian priority list that are less than €,F
	à by weight
	- 1
	Norwegian Uriority list, see table.
	Vhe product contains no substances given by the ÜÒAÔP Ôandidate list or the Norwegian priority list. Vhe product is
	classified as ha: ardous waste (Avfallsfors\ iften, Annex @, see table.

According to available documentation, the product does not contain any

ha: ardous substance.

Transport

Ôentral storage is as the same location as the factory

0 km

Indoor environment

Vhe product is not tested for emissions to the indoor environment

Carbon footprint

Q order to increase the transparancy of biogenic carbon contribution to climate impact, the indicator for GY Ú has been sub\(\mathbb{E}\) livided into the following K

GWP-BC Ôlimate impacts from the net upta\ e and emission of biogenic carbon from each module.

Olimate impacts										
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7				
GWP-IOBC	kg CO ₂ -e uiv.	2,30E-01	4,76E-02	4,30E-02	1,33E-02	0,00E+00				
GWP-BC	kg CO ₂ -e uiv.	-2,07E+00	0,00E+00	0,00E+00	7,18E-02	0,00E+00				
GWP	kg CO ₂ -e uiv.	-1,84E+00	4,76E-02	4,30E-02	8,51E-02	0,00E+00				

Ôlimate impacts										
Parameter	Unit	C1	C2	C3	C4		D			
GWP-IOBC	kg CO ₂ -e uiv.	2,59E-04	1,37E-02	5,66E-02	3,37E-04		-1,38E-01			
GWP-BC	kg CO ₂ -e uiv.	0,00E+00	0,00E+00	2,00E+00	0,00E+00		0,00E+00			
GWP	kg CO ₂ -e uiv.	2,59E-04	1,37E-02	2,06E+00	3,37E-04		-1,38E-01			

Climate declaration physical electricity mix

Vo increase transparency in the contribution to climate impact, the results for module AFËA3 and the GY Ú indicator are presented in the table. Vhe Norwegian mar\ et mix with imports at medium voltage has been applied in this assessment.

Parameter	Unit	A1-A3
GWP-IOBC	kg CO ₂ -e uiv.	2,46E-01
GWP-BC	kg CO ₂ -e uiv.	-2,07E+00
GWP	kg CO₂-e uiv.	-1,83E+00

Bibliography	
NS-EN ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
NS-EN ISO 14044:2006	Environmental mana*ement - Ši-e cycle assessment - Üe uirements and *uidelines
NS-EN 15804:2012+A1:2013	Ùustainability o~construction ¸ or\s - Environmental product declaration - Ôore rules -or t @ product cate*ory o~construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
NS-EN 16449:2014	Y ood and ood-based products - Ôalculation o~t @ bio*enic carbon content oo ood and conversion to carbon dioøide
NS-EN 16485:2014	Üound and sa¸ n timber - Environmental Product Öeclaration - Product cate* ory rules -or ¸ ood and ¸ ood-based products -or use in construction
NPCR012 v.2	Product category rules for insulation products
Ecoinvent v3.5	Swiss Centre of Life Cycle Inventories. www.ecoinvent.ch
Ùtatistics Norway	Table €I Ï H€KÔonsumption o~-uel used -or *ross production o~district @atin* ÊŒFÌ
Ùtatistics Norway	Table €I Ï GÏ KÖistrict @atin* balanceÊŒFÌ
Ùtatistics Norway	Table €JI Î JKÞet production o~district @atin* by type o~@at centralÊŒFÌ
Tellnes et al. (2023)	Tellnes, L. G. F., Biedacha M. (2023). LCA-report for Hunton Fiber AS. Report nr. OR.28.23 from NORSUS, Kråkerøy, Norway.
Raadal et al. (2009).	Raadal, H. L., Modahl, I. S. & Lyng, K-A. (2009). Klimaregnskap for avfallshåndtering, Fase I og II. Oppdragsrapport nr 18.09 fra Østfoldforskning, Norge
SINTEF Byggforsk (2019)	Product Ôerti-icate nrÈHUÏ -or Punton Þative tre-iberisolaslønÈPublis @d by ÙIÞTEØ Óy**-ors\ in ŒFÌ Êand revised in ŒFJ ¸ it @validity to FÈFŒ€GHÈ
EN 15101-1	T@rmal insulation products -or buildin* - In-situ -ormed loose -ill cellulose ଔ⊅ÔlDproducts - Part FKÙpeci-ication -or t @ products be-ore installationÈ
Hunton Fiber (2019)	TUT documentationÈPunton Þativo Y ood Øiber Insulation Ólo, n-inÈ

© epd-norge The Norwegian EPD Foundation	Programme operator and publisher	ÜhoneK	+47 23 08 80 00
	Vhe Norwegian ÒÚÖ Øoundation		
	Pb. 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
	Norway	web	www.epd-norge.no
HUNTON	Owner of the declaration	Úhone:	+47 815 10 033
	Hunton Fiber AS		
	Niels Ødegaards gate 8, 2810 Gjøvik	e-post:	teknisk@hunton.no
	Norway	web	www.hunton.no
Ostfoldforskning	Author of the Life Cycle Assessment	Úhone:	+47 69 35 11 00
	Lars G. F. Tellnes	Fax	+47 69 34 24 94
	Østfoldforskning AS	e-mail:	post@ostfoldforskning.no
	Stadion 4, 1671 Kråkerøy, Norge	web	www.ostfoldforskning.no