

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804 Owner of the declaration: Program operator: Publisher: Declaration number: Registration number: ECO Platform reference number: @sue dateK Valid to:

Hunton Fiber AS Vhe Þorwegian ÒPD Øoundation Vhe Þorwegian ÒPD Øoundation NEPD-2287-1041-EN NEPD-2287-1041-EN

06.07.2020 - Rev. 10.11.2023 06.07.2025

Hunton Nativo® Y ood Øbre Qsulation Óoardï

Hunton Fiber AS

www.epd-norge.no

General information

Product:

Hunton Nativo® Y ood Øbre Qsulation Óoard

Program operator:

Vhe Porwegian	OPD Coundation		
PbÈ5250 Majorstuen, 0303 Oslo			
Phone:	+47 23 08 80 00		
e-mail:	post@epd-norge.no		

Declaration number:

NEPD-2287-1041-ÒÞ

ECO Platform reference number:

This delcaration is based on Product Category Rules CEN Standard EN 15804 serves as core PCR NPCR 012 Insulation materials v.2 (06/2018).

Statement of liability

Vhe owner of the declaration shall be liable for the underl[^] ing information and evidenceÈÒPD Þorwa[^] shall not be liable with respect to manufacturer informationÊlife c[^] cle assessment data and evidencesÈ

Declared unit:

Declared unit with option:

Functional unit:

F mGwood fibre insulation installed in a thic∖ ness of H mm and a thermal resistance of RMF SmœY from cradle∄oĒgrave with a reference lifecˆcle of Î €ˆearsÈ

Verification

internal X e¢ternal			
Vhird part verifierK			
Chintofer Skaar			
Christofer Skaar, PhD			
Qadependent verified approved b^ OPD Porwa^D			

Owner of the declaration:

Hunton Fiber AS Ôontact person: Phone: e-mail:

Thomas Løkken +47 815 10 033 teknisk@hunton.no

Manufacturer:

Hunton Fiber AS

Place of production:

Gjøvik, Norge

Management system:

ISO 50001:2011 ISO 9001:2015 PEFC ST 2002:2013

Org. no.: 964 014 256

Issue date:

06.07.2020 - Rev. 10.11.2023

Valid to:

06.07.2025

Year of study:

2015-2020 Wpdated 2023

Comparability:

ÒPD of construction products ma[^] not be comparable if the[^] do not compl[^] with ÒÞ FÍ Ì € and are seen in a building conte¢tÈ

The EPD has been worked out by and updated by:

Lars G. F. Tellnes Østfoldforskning AS

NORSUS AS Moviey Bredadou

🕐 Østfoldforskning

Las Alleres

NORSUS

Maciej Biedacha

Opproved

Håkon Hauan (T anaging Director of ÒPD Þorwa[^])

Product

Product description:

Hunton Nativo® Wood Fibre Insulation Board is produced by defibration of wood chips which are then mixed with additives for structure and fire resistance. Used for thermal insulation of walls, roofs and ceilings in buildings.

Product specification:

Applies to all dimensions of wood fibre insulation boards.

Technical data:

Wood fibre insulation board has a thermal conductivity of (23°C/50 % RH) 0.038 W/mK at a density of 50 kg/m3. Thermal conductivity has been tested in accordance with EN 13171, which is also the harmonised standard the product is produced in compliance with.

Market area:

Nordics, scenarios in LCA have been calculated based on use in Norway.

Materials	kg	%
Wood fibre, dry weight	1,54	81,2 %
Water	0,15	8,0 %
Amonium phosphate	0,15	8,1 %
Polyolefin fibre	0,05	2,7 %
Total for product	1,90	100,0 %
Wooden packaging	0,11	
Plastic packaging	0,03	
Total, with packaging	2,04	

Lifecycle:

Reference lifecycle is the same as that of the construction, usually set to \hat{I} 0 years. This is based on UBT (FÖX) for the product and the assumptions therein.

LCA: Calculation rules

Functional unit:

1 m2 wood fibre insulation installed in a thickness of 38 mm and a thermal resistance of RMI Km2/W from cradleĦoĒgrave with a reference lifecycle of Î 0 years.

System boundary:

Flowchart for the entire lifecycle (A1ËCI) with system boundaries has been shown in the diagram below. T odule Ö has also been included outside the lifecycle with energy and material substitution from recycling, and is elaborated upon under the scenarios.

Data quality:

Data for the production of wood fibre insulation is based on half a year of production in 2019. For the raw material wood chips, it is based on ecoinvent and updated with Norwegian data. The remaining data is based on ecoinvent v3.5, but adjusted to improve representativity. Ecoinvent v3.5 was launched in 2018, and no data is older than 10 years. All energy consumption in database figures are assumed not used as raw material.

Allocation:

Allocation has been made in accordance with provisions of EN 15804. Electricity consumption in production has been allocated by specific energy consumption for the various products, while remaining energy consumption, water, waste and internal transport have been allocated by mass across products. Impact on the primary production of recycled materials has been allocated to the main product where the material was used. In the value chain for timber, economic allocation has been used.

Cut-off criteria:

All important raw materials and all significant energy consumption have been included. The production process for the raw materials and energy flows involved as very small amounts (<1%) have not been included. These cut-off criteria do not apply for hazardous materials and substances.

Calculation of biogenic carbon content:

Absorbance and release of carbon dioxide from biological origin has been calculated based on NS-EN 16485:2014. This method is based on the principle of modularity in EN 15804:2012, where release must be counted in the lifecycle module where it actually happens. The amount of carbon dioxide has been calculated in accordance with NS-EN 16449:2014. The net contribution to GWP from biogenic carbon is shown for each module on page 8. Timber comes from sustainable forestry and features PEFC certified traceability.

LCA: Scenarios and other technical information

The following information describes the scenarios for the modules in the EPD.

Two transport scenarios for transport in module A4 have been assessed in this EPD. The first scenario assumes a transport distance of 250 km with a large truck to an intermediate storage. Further, it is assumed a transport distance of 50 km with a medium-sized truck. The second scenario assumes transport directly to a construction site, with a distance of 300 km.

Transport from production location to user (A4)

				B ¹ · · · ·		
lype			Vehicle type	Distance, km	Fuel/Energy	Unit
<i></i>		Capacity utilisation incl. return (%)			consumption	
Car		41,6	EURO6, >32 tonnes	250	0,054	l/tkm
Car		40,4	EURO6, 16-32 tonnes	50	0,078	l/tkm
Car		41,6	EURO6, >32 tonnes	300	0,054	l/tkm

In the construction phase, wastage of 2 % has been assumed, as well as some electricity for installation. Waste management of the packaging is also included.

Construction phase (A5)

	Unit	Value
Auxiliary materials	m ³	0
Auxiliary materials	kg	0
Auxiliary materials	kg	0
Water consumption	m ³	0
Electricity consumption	MJ	0,04
Other energy sources	MJ	0
Material loss	kg	0,038
Materials from waste management	kg	0,14
Dust in the air	kg	0

There are no LCA-related environmental impacts during use.

Installed products in use (B1)

	Unit	Value
Relevant emissions during use	kg	0

V@^]¦[å`&c}[¦{æ¢|^ ¦^``ã^•}}[{aã;c^}æ}&^{[¦¦^]}æãiÈ

Maintenance (B2)/Repair (B3)

	Unit	value
Maintenance frequency*	р	0
Auxiliary materials	kg	0
Other resources	kg	0
Water consumption	kg	0
Electricity consumption	MJ	0
Other energy sources	MJ	0
Material loss	kg	0

Q, æ}[¦{ 懕ãč ææã[}Êco@^]¦[å*&c¦^`*ã^•}[¦^]|æ&^{ ^}c å*¦ã}* co@~&[]•d*&cã[}€|ã^& &|^

Replacement (B4)/Renovation (B5)

	Unit	Value
Replacement frequency*	year	60
Elektrisitetsforbruk	kWh	0
Replacement of worn parts	0	0

* Xalue or RÙŠ (Reference Ùerçice Šife

Vhe product has no energy or water consumption in operationÈ

Energy (B6) and water (B7) consumption in operation

	Unit	Xalue
Water consumption	m ³	0
Electricity consumption	kWh	0
Other energy sources	MJ	0
Peating effect of the equipment	kW	0

Vhe proåuct can àe sorteå as mixeå wooå waste at the construction site anå manageå with energy recoçeryÈ

End of Life (C1, C3, C4)

	Unit	Xalue
Pa: aråous waste	kg	0
Mixeå waste	kg	1,90
Recycling	kg	0
Recirculation	kg	0
Ònergy recoçery	kg	1,90
Øor waste åeposit	kg	0

Vhe transport of wooå waste is aasea on the acerage aistance for GEE in Þorway ana ma\es up ÌÍ \m QRaaaal et al ÈQEEJ DE

Transport to waste management (C2)

Туре	Capacity utilisation incl. return (%)	Vehicle type	Distance, km	Fuel/Energy	Value
			consumption	(I/t)	
Car		Unspecified	85	0,027 l/tkm	2,3

The gains from exported energy from energy recovery in municipal waste facilities have been calculated with replacement of Norwegian electricity mix and Norwegian district heating mix. Data for electricity mix is the same as that used in A1-A3, and district heating mix is based on the 2017 production.

Benefits and loads beyond the system boundaries (D)

	Unit	Value
Substitution of electrical energy	MJ	2,4
Substitution of thermal energy	MJ	19,6
Substitution of raw materials	kg	0

LCA: Results

The results for global warming in the various modules return a large contribution from absorbance and release of biogenic carbon. The net contribution from biogenic carbon in each module is shown on page 8.

Punt[n] r[åuce•, [[å fiàre in•ulati[n at t@ir ne, fact[ry at SkjervenÊày Gjøvik. V@ fact[ry @a• n[åirect e{ i••i[n• t[t@e ençir[n{ ent [t@er t@an fr[{ internal tran•] [rt. Ùtartin* fr[{ 2023ÊHunton @a• acquireå a guarantee [f [ri* in, en• urin* t@at electricity c[n•u{ eå at t@e fact[ry •te{ • fr[{ rene, aàle ener* y•[urce•ÈV@ result• presenteå in t@ å[cu{ ent i• calculated àa•eå [n electricity] r[åuceå F€Ã fr[{ , ater][, erÈHunton i• c[ntinually optimi: in* t@eir] r[åucti[n] r[ce••e• at t@e fact[ry. Ô[n•equentlyÊit i• e¢] ecteå t@at an[t@er reçi•i[n [f t@e re•ult• i• requireå in G€G È

System boundaries (X = included, MND = Module Not Declared, MNR = Module Not Relevant)

Pro	oduct s	tage	Cons installa	truction ition stage				Use st	age			End of life stage			Benefits and loads beyond the system boundary	
Raw materials	Transport	Manufacture	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Renovation	Operational energy consumption	Operational water consumption	Disassembly	Transport	Waste management	Waste for final processing	Potential for recycling- recovery-recirculation
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	Х

Environme	Environmental impact												
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7							
GWP	kg CO ₂ -equiv.	-2,43E+00	1,55E-01	1,46E-01	1,81E-01	0,00E+00							
ODP	kg CFC11-equiv.	3,89E-08	2,89E-09	2,74E-09	-2,23E-10	0,00E+00							
POCP	kg C_2H_4 -equiv.	3,97E-04	2,36E-05	2,24E-05	8,44E-06	0,00E+00							
AP	kg SO ₂ -equiv.	8,28E-03	3,02E-04	2,91E-04	1,89E-04	0,00E+00							
EP	kg PO ₄ ³⁻ -equiv	5,10E-04	4,24E-05	4,13E-05	1,63E-05	0,00E+00							
ADPM	kg Sb-equiv.	5,06E-06	4,55E-07	4,13E-07	1,33E-07	0,00E+00							
ADPE	MJ	1,05E+01	2,30E+00	2,20E+00	2,34E-01	0,00E+00							

Environmental impact

	mai impaot					
Parameter	Unit	C1	C2	C3	C4	D
GWP	kg CO ₂ -equiv.	2,59E-04	2,05E-02	3,00E+00	2,93E-04	-2,04E-01
ODP	kg CFC11-equiv.	8,89E-12	3,85E-09	1,51E-09	1,01E-10	-2,33E-08
POCP	kg C_2H_4 -equiv.	7,30E-08	2,69E-06	6,36E-06	8,27E-08	-2,73E-04
AP	kg SO ₂ -equiv.	1,63E-06	7,90E-05	1,91E-04	1,99E-06	-1,28E-03
EP	kg PO₄ ⁻ -equiv.	1,53E-07	1,39E-05	5,11E-05	3,63E-07	-3,95E-04
ADPM	kg Sb-equiv.	3,06E-08	6,84E-08	5,58E-08	4,31E-10	-1,45E-06
ADPE	MJ	1,80E-03	3,12E-01	2,02E-01	9,46E-03	-2,39E+00

Transport scenario , it@inter{ ediate stora e.

**Transport scenario directly to construction site.

ÕY Ú Õloàal Y ar{ in* ÚotentialLUÖÚ Ùtratosp@ric o: one depletion potentialLÚÚÔÚ Ú@otoc@{ ical o: one creation potentialLŒÚ Œcidi∔cation potential o~land and aterLÒÚ Òutrop@cation potentialLŒÜÚT Œaiotic depletion potential -or non -ossil resourcesLŒÜÚÒ Œaiotic depletion potential -or -ossil resources

Resource	use					
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7
RPEE	MJ	2,78E+01	3,44E-02	3,23E-02	2,94E+00	0,00E+00
RPEM	MJ	3,13E+01	0,00E+00	0,00E+00	-1,75E+00	0,00E+00
TPE	MJ	5,91E+01	3,44E-02	3,23E-02	1,19E+00	0,00E+00
NRPE	MJ	8,21E+00	2,35E+00	2,24E+00	2,75E-01	0,00E+00
NRPM	MJ	3,37E+00	0,00E+00	0,00E+00	2,38E-02	0,00E+00
TRPE	MJ	1,16E+01	2,35E+00	2,24E+00	2,99E-01	0,00E+00
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m ³	1,02E-02	4,50E-04	4,46E-04	2,47E-04	0,00E+00

Resource use

Resource	use					
Parameter	Unit	C1	C2	C3	C4	D
RPEE	MJ	4,19E-02	4,49E-03	2,94E+01	1,75E-04	-1,94E+01
RPEM	MJ	0,00E+00	0,00E+00	-2,93E+01	0,00E+00	0,00E+00
TPE	MJ	4,19E-02	4,49E-03	9,08E-02	1,75E-04	-1,94E+01
NRPE	MJ	4,35E-03	3,19E-01	2,39E+00	9,76E-03	-3,07E+00
NRPM	MJ	0,00E+00	0,00E+00	-2,18E+00	0,00E+00	0,00E+00
TRPE	MJ	4,35E-03	3,19E-01	2,11E-01	9,76E-03	-3,07E+00
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-1,19E-03
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m ³	2,31E-06	5,86E-05	5,28E-04	1,12E-05	-1,82E-03

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life	End of life - Waste											
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7						
HW	kg	1,14E-05	1,47E-05	1,39E-05	1,05E-06	0,00E+00						
NHW	kg	1,39E+00	2,08E-01	2,16E-01	3,50E-02	0,00E+00						
RW	kg	2,11E-05	7,27E-07	6,83E-07	5,89E-07	0,00E+00						

End of life - Waste

	- 114316					
Parameter	Unit	C1	C2	C3	C4	D
HW	kg	4,12E-09	8,10E-07	6,01E-07	4,40E-09	-2,97E-06
NHW	kg	7,28E-04	2,38E-02	2,51E-02	5,46E-02	-1,22E-01
RW	kg	4,37E-08	2,15E-06	4,61E-07	5,76E-08	-1,79E-05

HW Hazardous waste disposed of; NHW Non-hazardous waste disposed of; RW Radioactive waste disposed of

End of life - Output

Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	1,18E-02	0,00E+00	0,00E+00	2,85E-02	0,00E+00
MER	kg	5,34E-04	0,00E+00	0,00E+00	3,33E-03	0,00E+00
EEE	MJ	2,98E-02	0,00E+00	0,00E+00	4,85E-02	0,00E+00
ETE	MJ	3,17E-01	0,00E+00	0,00E+00	3,99E-01	0,00E+00

End of life	- Output					
Parameter	Unit	C1	C2	C3	C4	D
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	2,40E+00	0,00E+00	-2,40E+00
ETE	MJ	0,00E+00	0,00E+00	1,96E+01	0,00E+00	-1,96E+01

CR Components for reuse, MR Materials for recycling, MER Materials for energy recovery, EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9,0 \text{ E}-03 = 9,0^{*}10^{-3} = 0,009$

Additional Norwegian requirements

Greenhouse gas emission from the use of electricity in the manufacturing phase

Electricity with guarantee of origin,100% renewable energy of medium voltage, including production of transmission lines and grid loss, have been applied for electricity in the production process (A3).

Data source	Amount	Unit
Ecoinvent v3.5 (2018)	22,2	gram CO ₂ -equiv./kWh
Electricity, 100% water power GOO	8,8	gram CO ₂ -equiv./kWh

Hazardous substances

V @ proåuct contains no suàstances 4 om t @ ÜEAÔP Ôanåiåate list or t @ Þorwe* ian priority list

- □ V@ proåuct contains suàstances w@c@are àelow A ày wei* @ on t@ ÜEAÔP Ôanåiåate list
- V@ proåuct contains suàstances -rom t@ ÜEAÔP Ôanåiåate list or t@ Þorwe* ian priority list, see taàle unåer Ùpeci-ic Þorwe* ian requirementsÈ
- V@ proåuct contains no suàstances on t@ ÜEAÔP Ôanåiåate list or t@ Þorwe* ian priority listÈV@ proåuct is c@aracteriseå as @a: aråous waste Ç-ÈAnne¢ @to t@ Þorwe* ian Y aste Üe* ulation ËAv-alls-ors\ri-tenD see taàle unåer Ùpeci-ic Þorwe* ian requirementsÈ

Transport

Ôentral stora* e is at t@e same location as t@e -actory

0 km

Indoor environment

Q Vec@ical Approval Q/e\nis\ Õoå\bennin* DnoÈG€I I €, Punton Y ooå Øàre Qusulation Óoarå @as àeen åeemeå not to release particulates, * asses or raåiation t@at @ave a ne* ative impact on t@e inåoor climate or on @ealt@È

Carbon footprint

In order to increase transparency in the biogenic carbon contribution to climate impact, the GWP indicator has been broken up into sub-indicators:

GWP-IOBC Climate impact calculated after the principle of immediate oxidation of biogenic carbon.

GWP-BC Climate impact from net absorbance and release of biogenic carbon from the materials in each module.

Climate impact

Cinnate in	ιρασι					
Parameter	Unit	A1-A3	A4*	A4**	A5	B1-B7
GWP-IOBC	kg CO ₂ -eč uiv.	5,62E-01	1,55E-01	1,46E-01	1,45E-02	0,00E+00
GWP-BC	kg CO ₂ -e ŭiv.	-3,00E+00	0,00E+00	0,00E+00	1,67E-01	0,00E+00
GWP	kg CO ₂ -e ĭuiv.	-2,43E+00	1,55E-01	1,46E-01	1,81E-01	0,00E+00

Climate impact

Onnate in	ipuol					
Parameter	Unit	C1	C2	C3	C4	D
GWP-IOBC	kg CO ₂ -e ̆uiv.	2,59E-04	2,05E-02	1,76E-01	2,93E-04	-2,04E-01
GWP-BC	kg CO ₂ -e ̆uiv.	0,00E+00	0,00E+00	2,83E+00	0,00E+00	0,00E+00
GWP	kg CO ₂ -eč uiv.	2,59E-04	2,05E-02	3,00E+00	2,93E-04	-2,04E-01

Klimadeklarasjon fysisk el-miks

To increase transparency in the contribution to climate impact, the results for module AFËA3 and the GY Ú indicators are presented in the table. The Norwegian mar\ et mix with imports at medium voltage has been applied in this assessment.

Parameter	Unit	A1-A3
GWP-IOBC	kg CO ₂ -equiv.	5,66E-01
GWP-BC	kg CO ₂ -equiv.	-2,95E+00
GWP	kg CO ₂ -equiv.	-2,38E+00

Bibliography		
NS-EN ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures	
NS-EN ISO 14044:2006	Environmental mana*ement - Ši-e cycle assessment - Üĕuirements and *uidelines	
NS-EN 15804:2012+A1:2013	Ùustainability o~construction ∫or\s - Environmental product declaration - Ôore rules ≁or t@ product cate*ory o~construction products	
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products	
NS-EN 16449:2014	Y ood and ς ood-based products - Ôalculation o~t @ bio*enic carbon content o~, ood and conversion to carbon dio¢ide	
NS-EN 16485:2014	Üound and sa, n timber - Environmental Product Öeclaration - Product cate* ory rules -or , ood and , ood-based products -or use in construction	
NPCR012 v.2	Product category rules for insulation products	
Ecoinvent v3.5	Swiss Centre of Life Cycle Inventories. www.ecoinvent.ch	
Ùtatistics Norway	Table €I Ï H€KÔonsumption o~-uel used -or *ross production o~district @atin*ÊŒFÌ	
Ùtatistics Norway	Table €I Ï Ĝ KÖistrict @atin* balanceÊŒFÌ	
Ùtatistics Norway	Table €JI Î JKÞet production o~district @atin* by type o~@at centralÊŒFÌ	
Tellnes et al. (2023)	Tellnes, L. G. F., Biedacha M. (2023). LCA-report for Hunton Fiber AS. Report nr. OR.28.23 from NORSUS, Kråkerøy, Norway.	
Raadal et al. (2009).	Raadal, H. L., Modahl, I. S. & Lyng, K-A. (2009). Klimaregnskap for avfallshåndtering, Fase I og II. Oppdragsrapport nr 18.09 fra Østfoldforskning, Norge	
SINTEF Byggforsk (2019)	Product Ôerti-icate nrÈHUÏ -or Punton Þative tre-iberisolaslønÈPublis @d by ÙIÞTEØ Óy**-ors\ in ŒFÌ Êand revised in ŒFJ , it@validity to FÈCÈECHÈ	
EN 15101-1	T@rmal insulation products -or buildin* - In-situ -ormed loose -ill cellulose ଔØÔlDproducts - Part FKÙpeci-ication -or t@ products be-ore installationÈ	
Hunton Fiber (2019)	T UT documentationÈPunton Þativo Y ood Øiber Insulation Ólo, n-inÈ	

C epd-norge	Programme operator and publisher	ÚhoneK	+47 23 08 80 00
	Vhe Norwegian ÒÚÖ Øoundation		
	Pb. 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Owner of the declaration	Úhone:	+47 815 10 033
	Hunton Fiber AS		
	Niels Ødegaards gate 8, 2810 Gjøvik	e-post:	teknisk@hunton.no
	Norway	web	www.hunton.no
🖒 Østfoldforskning	Author of the Life Cycle Assessment	Úhone:	+47 69 35 11 00
	Lars G. F. Tellnes	Fax	+47 69 34 24 94
	Østfoldforskning AS	e-mail:	post@ostfoldforskning.no
	Stadion 4, 1671 Kråkerøy, Norge	web	www.ostfoldforskning.no