

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Sense Pro 300x1200

The Norwegian EPD Foundation

Owner of the declaration:

SG Armaturen AS

Product:

Sense Pro 300x1200

Declared unit:

1 pcs

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

IBU PCR - Part B for luminaires, lamps, and components for luminaires

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-5722-5013-EN

Registration number:

NEPD-5722-5013-EN

Issue date: 08.01.2024

Valid to: 08.01.2029

EPD Software:

LCA.no EPD generator ID: 181788

General information

Product

Sense Pro 300x1200

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number:

NEPD-5722-5013-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR IBU PCR - Part B for luminaires, lamps, and components for luminaires

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs Sense Pro 300x1200

Declared unit with option:

A1,A2,A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

1 Sense Pro 300x1200 LED luminaire manufactured and installed, used according to a specific lighting regime over 15 years, including waste treatment at end-of-life.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT41.

Third party verifier:

Vito D'Incognito, Take Care International

(no signature required)

Owner of the declaration:

SG Armaturen AS Contact person: Audun Skare Phone: +47 90021243 e-mail: audun.skare@sg-as.no

Manufacturer:

SG Armaturen AS Skytterheia 25 4790 Lillesand, Norway

Place of production:

SG Armaturen production site GM (China

, China

Management system:

Organisation no:

958560931

Issue date: 08.01.2024

Valid to: 08.01.2029

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2021.09, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Benedikte Ruud Andersen

Reviewer of company-specific input data and EPD: Audun Skare

Approved:

Håkon Hauan

Managing Director of EPD-Norway

Product

Product description:

The Sense panel is well designed and only 10 mm high. A narrow frame ensures attractive look and high efficiency. Sense can be mounted to visible T-rail ceilings without accessories and to concealed T-rail ceilings, DAMPA clip-in ceilings, Troldtekt acoustic panels and Gypsum, and surface-mounted using accessories. This makes Sense an all-round quality panel that can be used everywhere. Sense is available in several lumen packages, phase-dimming or DALI depending on which driver kit is selected (accessory).

Colour temperature: 3000 K. Colour rendering: Ra>80. MacAdams factor: SDCM:3 . Lifetime: L80/B20>100,000, L90>50.000. Light distribution: Direct. Optic: Plastic opal prism. Luminiare class: Class III. Contains light source of energy class: C. Housing: Aluminium. Height: 11 mm. Length: 1197 mm. Width: 297 mm. EAN: 7021982126765.

The EPD also covers the following products:

EAN: 7021982126772 - SENSE PRO 300x1200 4000K RA>80

Please note that the above has been calculated with the Norwegian energy-mix. If you want an EPD with a specific energy-mix, please send us a request.

Product specification

Materials	kg	%
Adhesive	0,01	0,20
Electronic - LED chip	0,00	0,06
Electronic - Printed wiring board	0,02	0,57
Electronic - Wire	0,02	0,55
Metal - Aluminium wrought alloy	0,40	13,09
Metal - Steel low alloy	1,05	34,41
Plastic - Ethylene vinyl acetate (EVA)	0,07	2,23
Plastic - Plexiglass (PMMA)	1,38	45,24
Plastic - Polyamide	0,00	0,01
Plastic - Polycarbonate (PC)	0,00	0,02
Plastic - Polyethylene (HDPE)	0,00	0,01
Plastic - Polyethylene terephthalate (PET)	0,10	3,19
Silicon products	0,01	0,43
Total	3,06	

Packaging	kg	%
Packaging - Cardboard	0,42	100,00
Total incl. packaging	3,48	

Technical data:

Link to product data on our website:

https://www.sg-as.com/products/sense-pro-300x1200/212676

Market:

Nordic + Northwestern Europe.

Reference service life, product

15 years. Estimated based on the characteristics of the product and the intended application.

Reference service life, building or construction works

60 years. Standard service life for buildings to the PCR Part A of EPD Norway.

LCA: Calculation rules

Declared unit:

1 pcs Sense Pro 300x1200

Cut-off criteria:

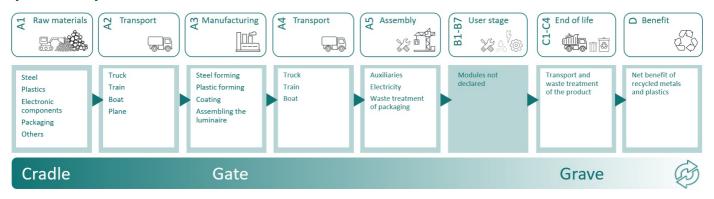
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) can be excluded. These cut-off criteria do not apply for hazardous materials and substances.

Allocation

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Adhesive	ecoinvent 3.6	Database	2019
Electronic - Printed wiring board	ecoinvent 3.6	Database	2019
Metal - Steel low alloy	ecoinvent 3.6	Database	2019
Packaging - Cardboard	ecoinvent 3.6	Database	2019
Plastic - Plexiglass (PMMA)	ecoinvent 3.6	Database	2019
Plastic - Polyamide	ecoinvent 3.6	Database	2019
Plastic - Polycarbonate (PC)	ecoinvent 3.6	Database	2019
Plastic - Polyethylene (HDPE)	ecoinvent 3.6	Database	2019
Silicon products	ecoinvent 3.6	Database	2019
Metal - Aluminium wrought alloy	Modified ecoinvent 3.6	Supplier data + database	2019
Electronic - Wire	Product composition + ecoinvent 3.6	Supplier data + database	2019
Plastic - Ethylene vinyl acetate (EVA)	Product composition + ecoinvent 3.6	Supplier data + database	2019
Plastic - Polyethylene terephthalate (PET)	Product composition + ecoinvent 3.6	Supplier data + database	2019
Electronic - LED chip	Scholand et al. (2012) + Ecoinvent 3.6	Scientific literature + database	2017

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	roduct sta	ge		uction on stage				Use stage					End of I	ife stage		Beyond the system boundaries
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refu <i>r</i> b ishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Х	Χ	X	Χ	Χ	MND	MND	MND	MND	MND	MND	MND	Χ	Χ	Χ	Χ	X

System boundary:

Additional technical information:

Link to Mounting instruction on our website:

 $https://www.sg-as.com/assets/product/default/data/703080_Sense\%20Pro\%20300x1200/20/703080_Sense\%20300x1200_User\%20manual.pdf$

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Module A4 = Transportation by truck (160 km) from the production site in Guangzhou, China to the harbor in Shenzhen, China. After this the goods are transported by ship (19000 km) from Shenzhen, China to Bremerhaven, Germany. Then with a truck (650 km) from Bremerhaven, Germany to the warehouse in Lillesand, Norway or to the warehouse in Mechelen, Belgium + 800 km for Nordic / Northwestern Europe Market.

Module A5 = Installation is performed in the Nordic / Northwestern Europe Market and done by manual labor, with the use of electrical machines, that fall under the cut-off criteria of 1% and is therefore neglected. Packaging of the final product consist of a corrugated board box.

Module C1 = The de-installation of the luminaire is done by manual labor, with the help of electrical machines. The use of portable electrical devices (e.g., drill) usually have low energy requirements falling under the cut-off-criterion of 1% and is therefore neglected.

Module C2 = Transportation from building site to the waste treatment facility with an average distance of 300km.

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with and without energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals, plastics, and electronic components allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastic insulation and other parts is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Ship, Freight, Transoceanic (km)	65,0 %	19000	0,003	l/tkm	57,00
Truck, 16-32 tonnes, EURO 6 (km) - Europe	36,7 %	1450	0,043	l/tkm	62,35
Truck, 16-32 tonnes, EURO 6 (km) - Rest of World	38,8 %	160	0,044	l/tkm	7,04
Assembly (A5)	Unit	Value			
Waste, cardboard and paper, to average treatment - A5 including transport (kg)	kg	0,42			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km) - Europe	36,7 %	300	0,043	l/tkm	12,90
Waste processing (C3)	Unit	Value			
Aluminium to recycling (kg)	kg	0,28			
Copper to recycling (kg)	kg	0,01			
Steel to recycling (kg)	kg	0,84			
Waste treatment of plastic mixture, incineration with energy recovery and fly ash extraction (kg)	kg	0,79			
Waste treatment of polyethylene (PE), incineration with energy recovery and fly ash extraction (kg)	kg	0,00			
Waste treatment per kg electronics scrap from PWB, without components, recycling of copper - C3 (kg)	kg	0,01			
Waste treatment per kg used electronic components, manual seperation (kg)	kg	0,02			
Waste treatment per kg used PWB, shredding and separation - C3 (kg)	kg	0,02			
Disposal (C4)	Unit	Value			
Landfilling of aluminium (kg)	kg	0,12			
Landfilling of ashes from incineration of Plastic mixture, process per kg ashes and residues (kg)	kg	0,03			
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg	0,00			
Landfilling of copper (kg)	kg	0,00			
Landfilling of hazardous waste (kg)	kg	0,01			
Landfilling of plastic mixture (kg)	kg	0,79			
Landfilling of steel (kg)	kg	0,21			

Benefits and loads beyond the system boundaries (D)	Unit	Value		
Substitution of copper with net scrap from PWB, without components (kg)	kg	0,00		
Substitution of electricity (MJ)	MJ	1,21		
Substitution of primary aluminium with net scrap (kg)	kg	0,08		
Substitution of primary copper with net scrap (kg)	kg	0,01		
Substitution of primary steel with net scrap (kg)	kg	0,84		
Substitution of thermal energy, district heating (MJ)	MJ	18,32		

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	onmental imp	act										
	Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
	GWP-total	kg CO ₂ - eq	2,83E+01	1,62E-01	1,25E+00	1,54E+00	7,20E-01	0,00E+00	1,70E-01	1,87E+00	9,71E-02	-1,79E+00
	GWP-fossil	kg CO ₂ - eq	2,86E+01	1,62E-01	1,25E+00	1,54E+00	6,79E-03	0,00E+00	1,70E-01	1,87E+00	9,71E-02	-1,76E+00
	GWP-biogenic	kg CO ₂ - eq	-3,64E-01	6,32E-05	1,94E-04	5,49E-04	7,13E-01	0,00E+00	7,05E-05	4,84E-05	1,00E-05	-4,10E-03
	GWP-luluc	kg CO ₂ - eq	3,18E-02	5,94E-05	1,36E-04	7,58E-04	2,25E-06	0,00E+00	6,06E-05	2,07E-05	2,37E-05	-1,76E-02
٥	ODP	kg CFC11 - eq	9,31E-07	3,53E-08	4,60E-08	3,39E-07	1,43E-09	0,00E+00	3,86E-08	4,22E-09	3,92E-09	-7,74E-03
	АР	mol H+ -eq	1,71E-01	4,86E-04	6,41E-03	2,29E-02	3,22E-05	0,00E+00	4,90E-04	4,22E-04	1,09E-04	-1,37E-02
	EP-FreshWater	kg P -eq	1,61E-03	1,52E-06	2,27E-05	1,00E-05	5,58E-08	0,00E+00	1,36E-06	4,85E-07	2,70E-07	-1,18E-04
	EP-Marine	kg N -eq	2,67E-02	9,56E-05	1,49E-03	5,49E-03	1,06E-05	0,00E+00	9,69E-05	1,98E-04	1,31E-04	-1,99E-03
	EP-Terrestial	mol N - eq	2,68E-01	1,07E-03	1,65E-02	6,11E-02	1,15E-04	0,00E+00	1,08E-03	2,03E-03	4,17E-04	-2,17E-02
	POCP	kg NMVOC -eq	1,04E-01	4,00E-04	6,20E-03	1,66E-02	3,31E-05	0,00E+00	4,15E-04	4,90E-04	1,42E-04	-8,34E-03
	ADP- minerals&metals ¹	kg Sb - eq	5,78E-04	4,36E-06	2,92E-06	2,99E-05	1,65E-07	0,00E+00	4,70E-06	2,18E-07	1,10E-07	-3,49E-05
	ADP-fossil ¹	MJ	3,66E+02	2,40E+00	1,14E+01	2,18E+01	9,50E-02	0,00E+00	2,58E+00	2,91E-01	3,17E-01	-1,86E+01
<u>%</u>	WDP ¹	m ³	6,13E+02	7,82E-01	1,06E+00	1,41E+01	1,20E-01	0,00E+00	2,49E+00	2,12E+00	4,42E+00	-3,77E+02

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

The product is compliant with the European RoHS Directive 2011/65/EU on Restriction of the use of certain Hazardous Substances in Electrical and Electronic equipment and with the European REACH regulation (EC) no 1907/2006 on Registration, Evaluation, Authorization and Restriction of Chemicals.

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Addi	Additional environmental impact indicators											
Ind	licator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
	PM	Disease incidence	1,68E-06	1,05E-08	7,51E-08	5,65E-08	4,75E-10	0,00E+00	1,04E-08	1,88E-09	2,07E-09	-1,86E-07
(m)	IRP ²	kgBq U235 -eq	4,39E-01	9,97E-03	1,64E-02	9,43E-02	4,07E-04	0,00E+00	1,13E-02	8,27E-04	1,66E-03	-4,61E-02
	ETP-fw ¹	CTUe	8,96E+02	1,94E+00	2,83E+01	1,50E+01	1,27E-01	0,00E+00	1,91E+00	3,99E+00	2,07E+02	-1,02E+02
44.	HTP-c ¹	CTUh	4,31E-08	0,00E+00	3,44E-10	0,00E+00	4,00E-12	0,00E+00	0,00E+00	1,32E-10	2,40E-11	-6,85E-09
48° E	HTP-nc ¹	CTUh	6,23E-07	1,91E-09	5,46E-08	1,12E-08	1,59E-10	0,00E+00	2,09E-09	6,54E-09	3,81E-10	3,00E-08
	SQP ¹	dimensionless	6,28E+01	1,64E+00	2,21E+00	1,07E+01	6,38E-02	0,00E+00	1,80E+00	5,25E-02	9,42E-01	-1,12E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource	use											
	licator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
	PERE	MJ	1,99E+01	2,72E-02	9,25E-01	2,48E-01	1,56E-03	0,00E+00	3,69E-02	2,09E-02	3,27E-02	-1,34E+01
4	PERM	MJ	3,44E+00	0,00E+00	0,00E+00	0,00E+00	-3,44E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
F3	PERT	MJ	2,33E+01	2,72E-02	9,25E-01	2,48E-01	-3,44E+00	0,00E+00	3,69E-02	2,09E-02	3,27E-02	-1,34E+01
	PENRE	MJ	3,64E+02	2,40E+00	1,14E+01	2,18E+01	9,51E-02	0,00E+00	2,58E+00	2,91E-01	3,17E-01	-1,86E+01
Ů.	PENRM	MJ	4,31E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-4,31E+01	0,00E+00	0,00E+00
IA.	PENRT	MJ	4,05E+02	2,40E+00	1,14E+01	2,18E+01	9,51E-02	0,00E+00	2,58E+00	-4,28E+01	3,17E-01	-1,86E+01
	SM	kg	3,71E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,98E-03	3,86E-03
2	RSF	MJ	5,71E-02	5,31E-04	5,12E-04	8,00E-03	5, 19E-05	0,00E+00	1,32E-03	3,95E-04	5,14E-04	3,08E-02
<u>M</u>	NRSF	MJ	2,38E-02	4,51E-03	5,58E-03	4,36E-02	2,14E-04	0,00E+00	4,72E-03	-6,90E-07	2,37E-03	4,23E-01
⊗	FW	m ³	1,80E-01	2,68E-04	7,09E-03	1,90E-03	4,48E-05	0,00E+00	2,75E-04	2,20E-03	3,84E-04	-3,16E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of lif	fe - Waste											
Ind	licator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
Ā	HWD	kg	1,21E-01	2,17E-04	9,47E-04	1,11E-03	0,00E+00	0,00E+00	1,33E-04	5,95E-07	2,39E-02	-2,12E-03
Ū	NHWD	kg	3,22E+00	1,15E-01	1,18E-01	6,91E-01	4,20E-01	0,00E+00	1,25E-01	1,09E-03	1,13E+00	-6,31E-01
8	RWD	kg	4,05E-04	1,57E-05	2,21E-05	1,49E-04	0,00E+00	0,00E+00	1,75E-05	4,76E-08	1,97E-06	-4,27E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

ı	nd of life - Output flow												
	Indica	ator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
	@ D	CRU	kg	0,00E+00									
	\$₽	MFR	kg	0,00E+00	0,00E+00	5,84E-02	0,00E+00	3,91E-01	0,00E+00	0,00E+00	1,13E+00	7,38E-05	-1,51E-04
	DF	MER	kg	0,00E+00	0,00E+00	5,50E-03	0,00E+00	2,94E-02	0,00E+00	0,00E+00	7,88E-01	4,39E-05	-1,99E-05
	50	EEE	MJ	0,00E+00	0,00E+00	8,46E-03	0,00E+00	2,40E-02	0,00E+00	0,00E+00	1,21E+00	4,87E-04	-4,87E-05
	D.	EET	MJ	0,00E+00	0,00E+00	1,28E-01	0,00E+00	3,63E-01	0,00E+00	0,00E+00	1,83E+01	7,36E-03	-7,37E-04

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content									
Unit	At the factory gate								
kg C	0,00E+00								
kg C	1,94E-01								
	kg C								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, China (kWh)	ecoinvent 3.6	1102,91	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

No effect on indoor environment.

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products											
Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	2,90E+01	1,62E-01	1,19E+00	1,54E+00	6,80E-03	0,00E+00	1,70E-01	1,87E+00	1,00E-01	-2,20E+00

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Philis et al., (2022). EPD generator for IBU PCR part B for luminaires, lamps, and components for luminaires, background information for EPD generator application and LCA data, LCA.no. Report number: 04.22. PCR verification report.

EPD Norway (2022). NPCR Part A: Construction products and services. The Norwegian EPD foundation. Version 2.0 published 24.03.2021. IBU (2017). PCR part B for luminaires, lampes and components for luminaires. Institut Bauen und Umwelt e.V. Version 1.7, published 30.11.2017.

@ and narway	Program operator and publisher	Phone: +47 23 08 80 00
© epd-norway	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
Ø	Owner of the declaration:	Phone: +47 90021243
sg	SG Armaturen AS	e-mail: audun.skare@sg-as.no
ح	Skytterheia 25, 4790 Lillesand	web: www.sg-as.com
	Author of the Life Cycle Assessment	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6B, 1671	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6B,1671 Kråkerøy	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
VERIFIED	ECO Portal	web: ECO Portal