

EPD

Environmental Product Declaration

VD4 Vacuum Circuit Breakers p.275 family with PT1 pole

Production site: Dalmine, Italy

DOCUMENT KIND	IN COMPLIANCE WITH			
Environmental Product Declaration	ISO 14025 and EN 50693			
PROGRAM OPERATOR	PUBLISHER			
The Norwegian EPD Foundation	The Norwegian EPD Foundation			
REGISTRATION NUMBER OF THE PROGRAM OPERATOR	ISSUE DATE			
NEPD-6029-5273-EN	2024-02-05			
VALID TO	STATUS SECURITY LEVEL			
2029-02-05	Approved	Approved Public		
OWNING ORGANIZATION	ABB DOCUMENT ID	REV.	LANG.	PAGE
ABB Switzerland Ltd, Group Technology Management	1VCD601896R0001	1VCD601896R0001 A EN 1/19		
© Copyright 2023 ABB. All rights reserved.				1

EPD Owner	ABB Switzerland Ltd, Group	Technology Management	
Organization No.	CHE-101.538.426		
Manufacturer name and address	ABB S.p.A. Via Friuli, 4, 24044 Dalmine,	-	
Company contact	Seila Rodriguez-Vilches – seil Sustainability Product Mana	la.rodriguez-vilches@ch.abb. ger	com
Program operator	The Norwegian EPD Foundat Post Box 5250 Majorstuen, 0 phone: +47 23 08 80 00, ema	303 Oslo, Norway	
Declared product	VD4 Vacuum Circuit Breaker	p.275 adopting PT1 pole in all	its versions.
Product description	electrical device that is used caused by overload or short	e tripolar circuit breaker. It is to control and protect an ele circuit. It can be equipped wi de dielectric strength and pro	ctrical circuit from damage th three embedded poles
Functional unit	To manage and protect the e	electrical continuity of the cire tor of 50% during a service li	
Reference flow		dopting PT1 pole and nomina	-
CPC code	46211 - Electrical apparatus f	for switching or protecting el electrical circuits, for a voltac	ectrical circuits, or for
Independent verification	J	he declaration and data, acco	
	Independent verifier approve Signature:	ed by EPD-Norge: Elisabet Am	nat
Approved by	Håkon Hauan, CEO EPD-Norg	qe	
	Signature: Haton Harr		
Reference PCR	Electrical Products and Syste EPDItaly007 – Electronic and	egory Rules for Life Cycle Ass ems. Electrical Products and Syste Electrical Products and Syste	ems, Rev. 3.0, 2023/01/13.
Program instructions	The Norwegian EPD Foundat Version 3.0, 2019/04/24.	tion/EPD-Norge, General Prog	gramme Instructions 2019,
LCA study		A study described in the LCA r	eport 1VCD601893R0001.
EPD type	Average product		
EPD scope	Cradle-to-grave		
Product RSL	20 years		
Geographical representativeness Reference year	Manufacturing (suppliers): Global 2022	Manufacturing (ABB): Italy	Downstream: Europe
-	Simapro 4 5 (2022)		
LCA software	SimaPro 9.5 (2023) Ecoinvent v3 9 1 (2022)		
•	Ecoinvent v3.9.1 (2022) EPDs published within the sa programs, may not be comp	ame product category, thoug arable. Full conformance with stages of a life cycle have bee e possible.	a PCR allows EPD

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	1VCD601896R0001	A	EN	2/19		
© Copyright 2023 ABB. All rights reserve	© Copyright 2023 ABB. All rights reserved.						

Contents

Sustainability at ABB	4
General Information	5
Constituent Materials	7
LCA Background Information	9
Inventory Analysis	
Environmental Indicators	14
Extrapolation rules	16
Additional Environmental Information	17
References	

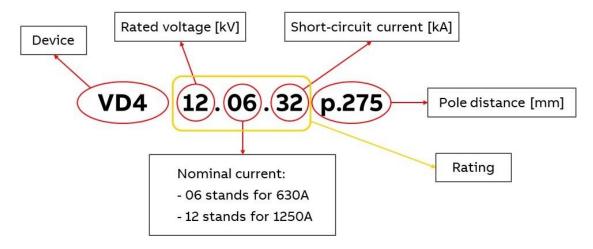
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	3/19
© Copyright 2023 ABB. All rights reserve	d.				

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation, and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels.

At ABB, we actively contribute to a more sustainable world, leading by example in our own operations and partnering with customers and suppliers to enable a low-carbon society, preserve resources, and promote social progress.

Learn more on our website <u>global.abb/group/en/sustainability</u> or scan the QR code.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	1VCD601896R0001	A	EN	4/19	
© Copyright 2023 ABB. All rights reserved	© Copyright 2023 ABB. All rights reserved.					



The products declared in this Environmental Product Declaration include the following devices of the Vacuum Circuit Breaker VD4 family with the related accessories and packaging:

- VD4
- VD4/GT
- VD4 G

The reference flow is composed by an average version complete of all the available accessories. The analysis will be mainly referred to the products with nominal current of 630A, while 1250A ones will be studied in Extrapolation rules chapter.

The presented devices are available in a variety of ratings, each one with its own construction and peculiarity. The following scheme reports how to derive the rating from the product's name. "Rating of a device" is defined as the combination of rated voltage, nominal current and short-circuit current.

General technical specifications of the available products are presented below.

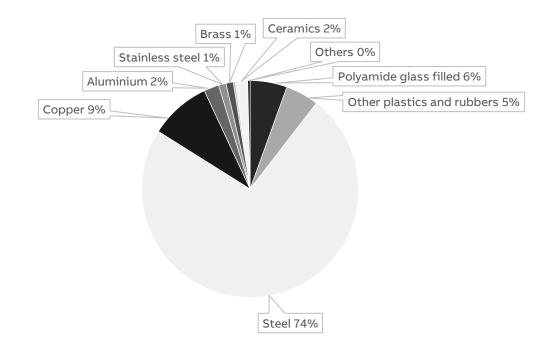
	VD4 family
Rated voltage [kV]	12 to 17.5
Rated current [A]	630 or 1250
Rated short circuit breaking current [kA]	16 to 31.5

It can be equipped with three embedded poles PT1, that are used to provide dielectric strength and protection of the vacuum interrupter (VG4-S or VGE4).

The VD4 devices are manufactured by the ABB site located in Dalmine, Italy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	5/19

The manufacturing site is certified according to the following standards:


- ISO 9001:2015 Quality Management Systems
- ISO 14001:2015 Environmental Management Systems
- ISO 45001:2018 Occupational Health and Safety Management Systems
- ISO 50001:2018 Energy management systems

© Copyright 2023 ABB. All right	nts reserved.		I		
Approved	Public	1VCD601896R0001	A	EN	6/19
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE

Constituent Materials

The average VD4 p.275 with PT1 pole average weighs 74.55 kg, and the constituent materials and average weights are presented below.

Туре	Material	Weight [kg]	Weight %
Plastics	Polyamide glass filled	4.12	5.51%
Plastics	Other plastics and rubbers	3.54	4.96%
	Steel	54.54	73.45%
	Copper	7.73	9.14%
Metals	Aluminium	1.68	2.25%
Metals	Stainless steel	0.44	1.12%
	Brass	0.80	1.08%
	Other metals	0.31	0.31%
Others	Ceramics	1.12	1.83%
others	Others	0.27	0.36%
Total		74.55	100.00%

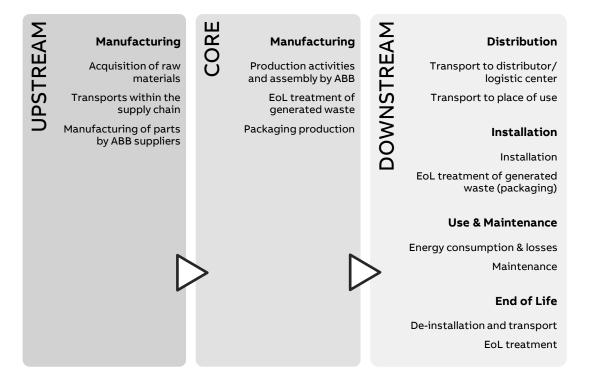
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	7/19

The packaging is the same for all the devices, the materials and accessories weighs 32.81 kg, and the constituent materials are presented below.

Description	Material	Weight [kg]	Weight %
Screw, bush, nut, bracket	Steel	1.16	3.55%
Packaging box	Cardboard	0.8	2.44%
Bags, straps, belt	Plastic	0.05	0.15%
Pallet, lid	Wood	30.8	93.86%
Total		32.81	100%

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	8/19
© Copyright 2023 ABB. All rights reserved	d.				

LCA Background Information


Functional Unit

The functional unit of this study is to manage and protect the electrical continuity of the circuit to which it is applied, during a service life of 20 years, with a use rate of 30% and a load factor of 50%. The reference flow is a single average VD4 p.275 with PT1 pole, including related accessories and packaging.

Note, the reference service life (RSL) of 20 years is a theoretical period selected for calculation purposes only – this is not representative for the minimum, average, nor actual service life of the product.

System Boundaries

The life cycle assessment of a VD4 p.275 with PT1 pole, an EEPS (Electronic and Electrical Products and Systems), is a "cradle-to-grave" analysis. The figure below shows the product life cycle stages and the information considered in the LCA.

In terms of exclusions from the system boundary, according to Standard/PCR, capital goods such as machinery, tools, buildings, infrastructure, packaging for internal transports, and administrative activities, which cannot be allocated directly to the production of the reference product, are excluded.

Infrastructures, when present, such as in processes deriving from the ecoinvent database, have not been excluded. Scraps for metal working and plastic processes are also included when already defined in ecoinvent.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	9/19
© Copyright 2023 ABB. All rights reserved	d.				

Temporal and geographical boundaries

In terms of temporal boundaries, all primary data collected from ABB are from 2022, which is considered a representative production year. Secondary data are provided by ecoinvent v3.9.1 which was released in 2022.

In terms of geographical boundaries, the materials and components used in the production of the average VD4 p.275 with PT1 pole are globally sourced. The supply chains are often complex and can extend across multiple countries and continents. Therefore, materials and background processes with global representativeness are selected from ecoinvent. Thus, a conservative approach is adopted.

Data quality

Both primary and secondary data are used. The main sources for primary data are the bill of materials and technical drawings, while site specific foreground data are provided by ABB. Furthermore, information and data are obtained from the EPD of the PT1 VG4-S pole (Report No. 3XAA008724, rev. A), and LCA report of the Vacuum Interrupter VGE4.

For all processes for which primary data are not available, generic data originating from the ecoinvent v3.9.1 database, "allocation, cut-off by classification", are used.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. In accordance with the PCR EPDItaly007, the environmental impact indicators are determined by using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019.

Allocation rules

The utility consumption and waste generation at the ABB manufacturing site is allocated to the production of one average VD4 p.275 with PT1 pole by using allocation rules. This is done by allocating electricity to surface area and production volume, heating, and waste to surface area. Water is allocated directly to employees of the line involved in the study.

For the end-of-life allocation, the "Polluter Pays" principle is adopted according to what is defined in the CEN/TR 16970 standard, as required by the PCR EPDItaly007. This means, waste treatment processes are allocated to the product system that generates the waste until the end-of-waste state is reached. The environmental burdens of recycling and energy recovery processes are therefore allocated to the product system that generates the waste, while the product system that uses the exported energy and recycled materials receives it burden-free. However, the potential benefits and avoided loads from recovery and recycling processes are not considered because it is not required by EPDItaly007.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	10/19
© Copyright 2023 ABB. All rigi	hts reserved.				

Cut-off criteria

According to PCR EPDItaly007 "Electronic and electrical products and systems", the cutoff criteria can be set to a maximum of 2% of the overall environmental impacts. In this LCA, components like stickers, glue and grease have been excluded as their weights are negligible. The same allies to packaging, where small parts such as sticking labels are even smaller fraction of the total mass.

Burnishing, oiling, black oxide, and phosphate surface treatments have also been excluded due to the low amount of surface involved.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	11/19
© Copyright 2023 ABB. All rights reserve	d.	·			

Inventory Analysis

Manufacturing stage

As presented in chapter Constituent Materials, low-alloyed steel and copper are the most frequently used materials, followed by polyamide and aluminum alloy.

Using the ecoinvent database, the steels are mainly modelled with *Steel, low-alloyed [GLO]| market for* and the copper is mainly modelled with *Copper, cathode [GLO]| market for*. To account for the production activities of metal and plastic parts, *Metal working, average* and *Injection molding* are the most frequently used processes. Surface treatments are also included, and the most common surface treatment is *Zinc coat, pieces [GLO]| market for*.

Supply chain transports are added as far as data is available between ABB, the suppliers, and sub-suppliers. Only primary suppliers are considered. The rest of the transports are assumed to already be included in ecoinvent's "market for"-processes.

For the ABB manufacturing site, which is considered in the core manufacturing stage, utility consumption and waste generation are allocated to the production of one average VD4 p.275 with PT1 pole according to the defined allocation rules. The packaging materials and accessories associated with the product are also considered in the core manufacturing stage.

Distribution

The transport distance from the ABB manufacturing site to the site of installation is assumed to be 300 km over land, as suggested by the PCR EPDItaly012, as the actual customer's distance is unknown. The selected ecoinvent process is *transport, freight, lorry 16-32 metric ton, EURO4 [RER]*.

Installation

The installation phase implies manual activities as well as the support of a lifting machinery, whose energy consumption is negligible. Therefore, this phase only considers the end-of-life of the packaging materials used.

The end-of-life scenario for packaging materials is based on *Packaging waste by waste management operations* by Eurostat (2020), which is representative for Europe. A transport distance of 100 km by lorry is assumed with the ecoinvent process *transport, freight, lorry 16-32 metric ton, EURO4 [RER]*, as actual location of disposal is unknown.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	12/19
© Copyright 2023 ABB. All rig	ahts reserved.	I			

Use

The use stage considers the reference power consumption over the reference service life of 20 years as defined in the functional unit. This is calculated using the following formula, according to PCR/standard:

$$P_{use} = R_{int} * (I_{nom} * LF)^2 * n_{poles}$$

$$E_{use}[kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000} = 232.07 \, kWh$$

Where:

- *E*_{use} = Total energy use over the reference service life
- *P*_{use} = Reference power consumption in watts
- *I_{nom}* = Nominal current, 630A in this reference case
- *R_{int}* = Internal resistance
- *LF =* Load Factor
- *n_{poles}* = Number of poles
- *RSL* = Reference Service Life in years
- *α* = Use time rate
- 8760 is the number of hours in a year
- 1000 is the conversion factor from W to kW

Because this product is sold globally and is not limited to any specific country, the latest energy mix of the European Union is adopted as suggested by the standard EN 50693. The emission factor of the energy mix is presented below.

Energy mix	Source	Amount	Unit
European energy mix; <i>Electricity, medium</i> voltage {RER} market group for Cut-off, S	Ecoinvent v3.9.1	0.368	kg CO2-eq./kWh

Maintenance was not considered because it does not imply any relevant use of material or energy.

End of life

Decommissioning of the product only implies manual activities, and no energy is consumed. Therefore, this phase only considers the end-of-life of the product.

The end-of-life scenario for the product is based on IEC/TR 62635 (Annex D.3), which is representative for Europe. A conservative approach is adopted by using the rates given for materials that go through a separation process, except for electronics for which selective treatment is assumed, and this includes the losses in the separation processes. A transport distance of 100 km by lorry is assumed as actual location of disposal is unknown.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	13/19
© Copyright 2023 ABB. All r	rights reserved				

∬[∓] Environmental Indicators

Average VD4 p.275 with PT1 pole

The environmental indicators for the average VD4 p.275 with PT1 pole family with a reference current of 630A results are presented.

			Cradle-	to-gate				
				_	Cradle-t	o-grave	_	
Impact		Total	UPSTREAM	CORE		DOWNS	STREAM	
category	Unit	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
GWP – total	kg CO₂ eq.	5.66E+02	4.67E+02	-1.71E+01	6.03E+00	1.52E+01	8.39E+01	1.10E+01
GWP – fossil	kg CO₂ eq.	5.85E+02	4.66E+02	2.27E+01	6.02E+00	9.27E-01	8.07E+01	8.91E+00
GWP – biogenic	kg CO₂ eq.	-1.94E+01	1.14E+00	-3.99E+01	5.48E-03	1.43E+01	2.98E+00	2.08E+00
GWP – luluc	kg CO₂ eq.	8.63E-01	5.70E-01	7.75E-02	2.94E-03	4.69E-04	2.02E-01	9.65E-03
ODP	kg CFC-11 eq.	2.51E-05	2.27E-05	7.12E-07	1.32E-07	1.96E-08	1.45E-06	9.55E-08
AP	mol H+ eq.	9.07E+00	8.46E+00	1.44E-01	2.49E-02	5.19E-03	4.05E-01	3.69E-02
EP – freshwater	kg P eq.	7.78E-01	6.91E-01	1.01E-02	4.24E-04	1.42E-04	7.37E-02	2.50E-03
EP - marine	kg N eq.	9.31E-01	7.72E-01	4.79E-02	9.51E-03	6.55E-03	7.21E-02	2.30E-02
EP – terrestrial	mol N eq.	1.11E+01	9.69E+00	5.21E-01	1.02E-01	2.24E-02	6.35E-01	9.88E-02
POCP	kg NMVOC eq.	3.27E+00	2.82E+00	1.70E-01	3.65E-02	7.47E-03	2.05E-01	3.15E-02
ADP – minerals and metals	kg Sb eq.	1.28E-01	1.27E-01	1.51E-04	1.95E-05	2.90E-06	1.61E-04	6.49E-05
ADP – fossil	MJ, net calorific value	7.96E+03	5.54E+03	3.79E+02	8.59E+01	1.34E+01	1.86E+03	9.33E+01
WDP	m³ eq.	1.88E+02	1.51E+02	1.68E+01	3.49E-01	6.76E-02	1.90E+01	1.20E+00

GWP-fossil: Global Warming Potential fossil; GWP-biogenic: Global Warming Potential biogenic; GWP-luluc: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential; EP-freshwater: Eutrophication potential-freshwater compartment; EP-marine: Eutrophication potential-marine compartment; EP-terrestrial: Eutrophication potential-accumulated exceedance; POCP: Formation potential of tropospheric ozone; ADPminerals & metals: Abiotic Depletion for non-fossil resources potential; ADP-fossil: Abiotic Depletion for fossil resources potential; WDP: Water deprivation potential.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	14/19
© Copyright 2023 ABB. All rig	ghts reserved.				

ENVIRONMENTAL PRODUCT DECLARATION

			Cradle-	to-gate				
					Cradle-t	o-grave		
Resource use	Unit	Total	UPSTREAM	CORE		DOWNS	TREAM	
parameters	ome	rotar	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
PENRE	MJ, low cal. value	7.85E+03	5.42E+03	3.79E+02	8.59E+01	1.34E+01	1.86E+03	9.33E+01
PERE	MJ, low cal. value	1.69E+03	7.85E+02	5.36E+02	1.33E+00	2.52E-01	3.57E+02	8.45E+00
PENRM	MJ, low cal. value	1.17E+02	1.17E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERM	MJ, low cal. value	4.52E+02	1.27E+01	4.39E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ, low cal. value	7.96E+03	5.54E+03	3.79E+02	8.59E+01	1.34E+01	1.86E+03	9.33E+01
PERT	MJ, low cal. value	2.14E+03	7.98E+02	9.75E+02	1.33E+00	2.52E-01	3.57E+02	8.45E+00
FW	m³	6.55E+00	4.44E+00	5.99E-01	1.22E-02	2.68E-03	1.45E+00	4.42E-02
MS	kg	2.24E+01	2.13E+01	1.11E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

PENRE: Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material; PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy resources used as raw material; PENRM: Use of renewable primary energy resources used as raw material; PENRT: Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); PERT: Notal use of renewable primary energy resources (primary energy and primary energy resources used as raw materials); FW: Net use of fresh water; MS: Use of secondary materials; RFS: Use of renewable secondary fuels; NRSF: Use of non-renewable secondary fuels.

			Cradle-	to-gate				
				_	Cradle-t	o-grave	_	
Waste			UPSTREAM	CORE		DOWNS	STREAM	
production indicators	Unit	Total	Manufa	cturing	Distribution	Installation	Use and maintenance	End-of-life
HWD	kg	8.54E-02	8.03E-02	1.82E-03	5.47E-04	7.87E-05	2.35E-03	3.54E-04
NHWD	kg	1.67E+02	1.25E+02	5.70E+00	4.20E+00	1.30E+01	5.10E+00	1.45E+01
RWD	kg	2.19E-02	7.20E-03	9.67E-04	2.79E-05	4.90E-06	1.35E-02	1.70E-04
MER	kg	1.22E+01	2.39E+00	4.57E-01	0.00E+00	8.99E+00	0.00E+00	3.58E-01
MFR	kg	9.36E+01	1.29E+01	6.64E+00	0.00E+00	1.13E+01	0.00E+00	6.27E+01
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ETE	MJ	5.19E+01	1.12E+01	2.20E+00	0.00E+00	3.58E+01	0.00E+00	2.66E+00
EEE	MJ	2.82E+01	5.68E+00	1.22E+00	0.00E+00	1.99E+01	0.00E+00	1.40E+00

HWD: hazardous waste disposed; NHWD: non-hazardous waste disposed; RWD: radioactive waste disposed; MER: materials for energy recovery; MFR: material for recycling; CRU: components for reuse; ETE: exported thermal energy; EEE: exported electricity energy.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	15/19
© Copyright 2023 ABB. All ri	iahts reserved.				

Extrapolation rules

Despite similarities from the constructive point of view, the total environmental impact indicators differ from the products with nominal current of 1250A more than 10% due to large differences in the use phase, while constructive and compositional differences are negligible. Therefore, to determine the impact indicators values for this stage, extrapolation rules are adopted. They are related to the use phase's proportionality with the nominal current as reported in the following formula:

$$Value_{Use \ phase \ 1250A} = Value_{Use \ phase \ 630A} * \left(\frac{i_{Actual}^2}{i_{Reference}^2}\right) = Value_{Use \ phase \ 630A} * \left(\frac{1250^2}{630^2}\right)$$

Where:

- *Value*_{Use phase 630A} can be found in the tables in the previous chapter;
- *Value*_{Use phase 1250A} can be obtained with the previous formula and are shown in the following table.

In the following table are presented the average values obtained for the VD4 p.275 with 1250A nominal current.

			Cradle-	to-gate					
					Cradle-t	o-grave			
Impact category	Total		UPSTREAM	CORE	DOWNSTREAM				
	Unit	rotur	Manufacturing		Distribution	Installation	Use and maintenance	End-of-life	
GWP – total	kg CO₂ eq.	8.15E+02	4.67E+02	-1.71E+01	7.98E+00	1.52E+01	3.30E+02	1.10E+01	
GWP – fossil	kg CO₂ eq.	8.24E+02	4.66E+02	2.27E+01	7.97E+00	9.27E-01	3.18E+02	8.91E+00	
GWP – biogenic	kg CO₂ eq.	-1.07E+01	1.14E+00	-3.99E+01	7.26E-03	1.43E+01	1.17E+01	2.08E+00	
GWP – luluc	kg CO₂ eq.	1.46E+00	5.70E-01	7.75E-02	3.90E-03	4.69E-04	7.95E-01	9.65E-03	
ODP	kg CFC-11 eq.	2.94E-05	2.27E-05	7.12E-07	1.75E-07	1.96E-08	5.71E-06	9.55E-08	
AP	mol H+ eq.	1.03E+01	8.46E+00	1.44E-01	3.30E-02	5.19E-03	1.60E+00	3.69E-02	
EP – freshwater	kg P eq.	9.95E-01	6.91E-01	1.01E-02	5.62E-04	1.42E-04	2.90E-01	2.50E-03	
EP - marine	kg N eq.	1.15E+00	7.72E-01	4.79E-02	1.26E-02	6.55E-03	2.84E-01	2.30E-02	
EP – terrestrial	mol N eq.	1.30E+01	9.69E+00	5.21E-01	1.34E-01	2.24E-02	2.50E+00	9.88E-02	
POCP	kg NMVOC eq.	3.89E+00	2.82E+00	1.70E-01	4.83E-02	7.47E-03	8.06E-01	3.15E-02	
ADP – minerals and metals	kg Sb eq.	1.28E-01	1.27E-01	1.51E-04	2.58E-05	2.90E-06	6.32E-04	6.49E-05	
ADP – fossil	MJ. net calorific value	1.35E+04	5.54E+03	3.79E+02	1.14E+02	1.34E+01	7.32E+03	9.33E+01	
WDP	m³ eq.	2.44E+02	1.51E+02	1.68E+01	4.62E-01	6.76E-02	7.47E+01	1.20E+00	

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	1VCD601896R0001	A	EN	16/19

Additional Environmental Information

Recyclability potential

The average recyclability potential of the average version of VD4 p.275 with PT1 pole is calculated by dividing "MFR: material for recycling" in the end-of-life stage by the total weight of the product. As a result, the average recyclability potential of the product is 87.14%.

Greenhouse gas emissions from the use of electricity in the manufacturing phase

Production mix from import. medium voltage (production of transmission lines. in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process.

Energy mix	Data source	Amount	Unit
<i>ABB_Electricity mix Dalmine factory {IT}_Bio37%-Solar37%-Hydro23%- Other2%_2022</i>	Ecoinvent v3.9.1	0.169	kg CO₂-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

Carbon footprint has not been worked out for the product.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	1VCD601896R0001	A	EN	17/19		
© Copyright 2023 ABB. All rights reserved.							

References

Bidinotto. G. (2023). VD4 p.275 with PT1 pole: Life Cycle Assessment Report (Report No. 1VCD601893R0001. rev. A). ABB Switzerland Ltd. Group Technology Management. Deminenko. W. (2022). PT1 VG4-S: Life Cycle Assessment Report (Report No. 3XAA008724. rev. A). ABB Switzerland Ltd. Group Technology Management. ecoinvent. ecoinvent v3.9.1 (2022). https://ecoinvent.org/the-ecoinvent-database/datareleases/ecoinvent-3-9-1/ European Committee for Standardization. (2019). Product category rules for life cycle assessments of electronic and electrical products and systems (EN 50693:2019). European Committee for Standardization. (2019). Sustainability of constructions - Environmental product declarations (EN 15804:2012+A2:2019). Eurostat. (2020). Packaging waste by waste management operations. https://ec.europa.eu/eurostat/databrowser/view/ENV_WASPAC/default/table?lang=en ICMQ S.p.A. (2023). PCR EPDItaly007-Electronic and electrical products and systems. rev. 3.0 (2023-01-13). EPDItaly. https://www.epditaly.it/en/view-pcr/ ICMQ S.p.A. (2020a). PCR EPDItaly012 - Electronic and electrical products and systems - switches. rev. 0 (2020-03-15). EPDItaly. https://www.epditaly.it/en/view-pcr/ ICMQ S.p.A (2020b). Regulations of the EPDItaly Programme Regulations. rev. 5.2 (2020-02-16). EPDItaly. https://www.epditaly.it/en/wp-content/uploads/2016/12/EPDITALY-Regulament_rev-5.2_EN.pdf International Electrotechnical Commission. (2012). Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment. Edition 1.0 (2012-10-1) (IEC/TR 62635). International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Principles and framework (ISO Standard No. 14040:2006). https://www.iso.org/standard/37456.html International Organization for Standardisation. (2006). Environmental management - Life cycle assessment - Requirements and guidelines (ISO Standard No. 14044:2006). https://www.iso.org/standard/38498.html PRé Sustainability. (2023). SimaPro (version 9.5) [computer software]. https://presustainability.com/solutions/tools/simapro/ SeaRates. (2022). Shipping Distances & Time Calculator. https://www.searates.com/services/distances-time The Norwegian EPD Foundation/EPD-Norge. (2019). General Programme Instructions 2019.

Version 3.0 (2019-04-24). https://www.epd-norge.no/getfile.php/1340010-1685100696/Dokumenter/GPI%20Det%20norske%20EPD%20programmet%20approved %20240419%20-%20ver3%20updated%20250523.pdf

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	1VCD601896R0001	A	EN	18/19		
© Copyright 2023 ABB. All rights reserved.							

	Program Operator and publisher		
C epd-norge	The Norwegian EPD Foundation	Ph.	+47 23 08 80 00
	Post Box 5250 Majorstuen.	email	post@epd-norge.no
	0303 Oslo. Norway	web	www.epd-norge.no
	Owner of the declaration		
	ABB Swizerland Ltd. Group		
	Technology Management		
	Brown Boveri Straße 6. 5400	web	www.abb.com
	Baden. Switzerland		
	Author		
	Giulio Bidinotto		
	ABB Spa	email	giulio.bidinotto@it.abb.com
	Via Friuli. 4. 24044 Dalmine. Italy	web	www.abb.com

© Copyright 2023 ABB. All rights reserved.						
Approved	Public	1VCD601896R0001	А	EN	19/19	
STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE	