



# **Environmental Product Declaration**

In accordance with ISO14025:2006 and EN15804:2012+A2:2019

12549 SL11 Hólabrú





### Owner of the declaration:

Colas Ísland ehf.

### Product name:

12549 SL11 Hólabrú

#### Declared unit:

1 tonne 12549 SL11 Hólabrú

#### Product category /PCR:

Asphalt /NPCR Part A: Construction products and services and NPCR 025 Part B for Asphalt

### Program holder and publisher:

The Norwegian EPD foundation 5250 Majorstuen, 0303 Oslo, Norway

#### **Declaration number:**

NEPD-6095-5358-EN

#### Registration number:

NEPD-6095-5358-EN

Issue date: 14.02.2024

Valid to: 14.02.2029

The Norwegian EPD Foundation



### General information

### Product:

12549 SL11 Hólabrú

### Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway

Tlf: +47 23 08 80 00 e-mail: post@epd-norge.no

### Declaration number:

NEPD-6095-5358-EN

# This declaration is based on Product Category Rules:

NPCR 025:2022 Part B for Asphalt ver. 1.1-2022 that complement the core rules defined in NPCR Part A for Construction products and services and EN 15804:2012+A2:2019.

### Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

### Declared unit:

1 tonne 12549 SL11 Hólabrú

### Declared unit with option:

A1, A2, A3, A4, C1, C2, C3, C4, D

### Functional unit:

The declared unit is used in this EPD since the system boundary does not include all information modules.

### Verification:

Independent verification of the declaration and data, according to ISO14025:2010

internal  $\square$  external  $\blacksquare$ 

Silje Wærp, Asplan Viak
Independent verifier approved by EPD Norway

### Owner of the declaration:

Colas Ísland ehf.

Contact person: Björk Úlfarsdóttir

Phone: +354 848 1080 e-mail: bjork@colas.is

### Manufacturer:

Colas Ísland ehf.

Gullhella 1, 221 Hafnarfjörður

Phone: 565 2030 e-mail: colas@colas.is

### Place of production:

Colas Ísland ehf. Gullhella 1 221 Hafnarfjörður, Iceland

### Management system:

ISO 14001:2015 and ISO 9001:2015

### Organisation no:

420187-1499

### Issue date:

14.02.2024

#### Valid to:

14.02.2029

### Year of study:

2023

### Comparability:

EPD of construction products may not be able to compare if they do not comply with EN 15804 and are seen in a building context.

### The EPD has been worked out by:

Ása Rut Benediktsdóttir, EFLA

**Approved** 

Manager of EPD Norway



### **Product**

### Product description:

The product under study is 12549 SL11 Hólabrú, a traditional hot-mix asphalt used as a construction material for pedestrian pavements and roads where traffic is light (less than 8.000 AADT (Annual Average Daily Traffic)).

### Product specification:

| T T O GLOUD OF COMPOSITOR |            |          |
|---------------------------|------------|----------|
| Materials                 | Value [kg] | %        |
| Hólabrú aggregates        | 666,00     | 66,6     |
| RAP                       | 285,75     | 28,575   |
| Bitumen                   | 48,00      | 48,0     |
| Evotherm                  | 0,25       | 2,50E-04 |
| Total                     | 1000,00    | 100,0    |

### Technical data:

About 30% of the aggregates that 12549 SL11 Hólabrú consists of are replaced with recycled asphalt pavement/product (RAP) and the product is 100% recyclable. Colas Ísland operates a Quality Management System which complies with the requirements of ISO 9001:2015 for the production, sale and laying of asphalt for roads, car parks and airfields to prepared formulations to meet customer specifications, including the sale of bitumen and emulsion.

### Market:

**Iceland** 

### LCA: Calculation rules

### Declared unit:

1 tonne of manufactured 12549 SL11 Hólabrú delivered to the construction site (A1-A4) including end-of-life treatment (C1-C4) and potential benefits/loads outside the product system (D).

### Cut-off criteria:

All important raw materials and energy demand are included.

#### Allocation:

The asphalt manufacturing process does not produce any co-products, such that no impacts had to be allocated to any products other than the asphalt products.

Allocation by mass was used where applicable in foreground processes, i.e. the total mass of raw materials (e.g. aggregates, RAP, bitumen) and water used in the production of 12549 SL11 Hólabrú was divided by the production mass to derive the mass required per tonne of asphalt product.



The individual energy and fuel demand in the production of the asphalt mixture was allocated by mass, assuming that the specific heat capacity of different hot-mix asphalt products is similar. The allocation is based on data on monthly electricity and marine gas oil (MGO) demand to produce the hot-mix asphalt products. Similarly, Colas Ísland was also able to approximate the energy required to keep the bitumen hot in storage tanks.

In 2021, 200 tonnes of asphalt waste from asphalt production, was used as input for asphalt production through a closed loop of recycling. This asphalt was allocated between different asphalt mixtures based on mass.

### Data quality:

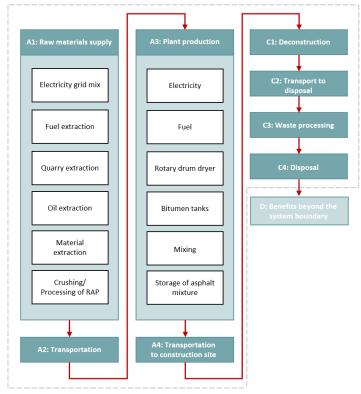
Information about the production of 12549 SL11 Hólabrú was provided by the employees of Colas Ísland and their raw material suppliers. The inventory data used for the assessment is geographically and technically representative for the products it covers because they are all produced in the factory that the data is retrieved from. For this study, it was decided that the data should be based on a one-year average, using data from 2022. The composition of the product remains constant, which is consequently temporally representative for the asphalt product. However, the average transport distance to construction site (A4) and to disposal (C2), was estimated based on data from 2021. Additionally, in 2023, Colas Ísland purchased new equipment used in the processing of RAP (A1) in 2023. Thus, to use representative data for this equipment, the reference year is 2023. In conclusion, the quality of the data is considered very good.

The Sphera LCA FE was used in the assessment. The international databases from Sphera Managed LCA Content (MLC) (Sphera Professional and construction database 2022) were used for generic background data. The data quality of the raw materials in A1 is given in the table below. Specific data from raw material suppliers was used, when available. Specific data was used for the asphalt manufacturing itself. All appropriate processes, both background and foreground, were included in the asphalt production model.

Most of the unit processes used are from the Sphera Professional database. According to its website, Sphera publishes "one of the largest high-quality, internally consistent Life Cycle Inventory (LCI) databases [...]." The databases offer "around 18,500 high-quality LCI datasets" and is largely built on high quality industry data, confirming its technical representativeness. The MLC is updated every year and are therefore "Always up-to-date" according to the developer. It follows that the temporal representativeness of the Sphera data is high.

| Materials          | Source                                        | Data quality | Year |
|--------------------|-----------------------------------------------|--------------|------|
| Hólabrú aggregates | Sphera Professional and Construction database | Generic      | 2022 |
| Bitumen            | Sphera Professional and Construction database | Generic      | 2019 |
| Evotherm           | Sphera Professional and Construction database | Generic      | 2022 |




System boundaries (X=included, MND=module not declared, MNR=module not relevant)

| Pro           | duct s    | tage          |           | embly<br>age |     | Use stage   |        |             |               | End of life stage      |                       |                            | ge        | Benefits &<br>loads beyond<br>system<br>boundary |          |                                        |
|---------------|-----------|---------------|-----------|--------------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|--------------------------------------------------|----------|----------------------------------------|
| Raw materials | Transport | Manufacturing | Transport | Assembly     | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport | Waste processing                                 | Disposal | Reuse-Recovery-Recycling-<br>potential |
| A1            | A2        | А3            | A4        | A5           | B1  | B2          | В3     | B4          | B5            | В6                     | В7                    | C1                         | C2        | С3                                               | C4       | D                                      |
| X             | X         | X             | X         | MND          | MND | MND         | MND    | MND         | MND           | MND                    | MND                   | X                          | X         | X                                                | X        | X                                      |

### System boundary:

This assessment is a cradle to gate EPD. Asphalt is a construction material and according to EN 15804+A2 and NPCR for asphalt by EPD-Norge, modules A1-A3, A4, C and D are included in the assessment.

A technical flowchart of the main production processes included in the LCA is shown below.





# LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to assembly/user (A4)

|   | Transport from pr<br>o building place ( | 1            | ce   | Capacity utilisation (incl. return) % | Distance<br>(km) | Fuel/Energy<br>consumption | Unit | Value |  |
|---|-----------------------------------------|--------------|------|---------------------------------------|------------------|----------------------------|------|-------|--|
| 7 | Γruck, Euro 4, 34-                      | 40t gross we | ight | 50,0                                  | 35               | 0,028                      | L/t  | 1,0   |  |

End of Life (C1, C3, C4)

|                                       | Unit | Value |
|---------------------------------------|------|-------|
| Hazardous waste disposed              | kg   | 0     |
| Collected as mixed construction waste | kg   | 0     |
| Reuse                                 | kg   | 0     |
| Recycling                             | kg   | 1000  |
| Energy recovery                       | kg   | 0     |
| To landfill                           | kg   | 0     |

Transport to waste processing (C2)

| Transport from production place to assembly/user (C2) | Capacity utilisation<br>(incl. return) % | Distance<br>(km) | Fuel/Energy<br>consumption | Unit | Value |
|-------------------------------------------------------|------------------------------------------|------------------|----------------------------|------|-------|
| Truck, Euro 4, more than 32t gross weight             | 50,0                                     | 17               | 0,085                      | L/t  | 1,45  |

### Benefits and loads beyond the system boundaries (D)

| Benefits and loads beyond the system boundaries (D)       | Unit | Value |
|-----------------------------------------------------------|------|-------|
| Substitution of primary asphalt with net recycled asphalt | kg   | 1000  |



### LCA: Results

Core environmental impact indicators

| Indicator               | Unit        | A1-A3     | A4        | C1        | C2        | <b>C</b> 3 | C4 | D         |
|-------------------------|-------------|-----------|-----------|-----------|-----------|------------|----|-----------|
| GWP - total             | kg CO2 eq   | 3,98E+01  | 3.07E+00  | 5,23E-01  | 4.17E+00  | NR         | 0  | -3,72E+01 |
| GWP - fossil            | kg CO2 eq   | 3,98E+01  | 3.08E+00  | 5,25E-01  | 4.19E+00  | NR         | 0  | -3,72E+01 |
| GWP - biogenic          | kg CO2 eq   | -1,13E-02 | -4.56E-02 | -7,13E-03 | -6.20E-02 | NR         | 0  | 2,44E-03  |
| GWP - luluc             | kg CO2 eq   | 3,54E-02  | 2.86E-02  | 4,77E-03  | 3.89E-02  | NR         | 0  | -2,81E-02 |
| ODP                     | kg CFC11 eq | 2,88E-11  | 4.02E-13  | 6,70E-14  | 5.47E-13  | NR         | 0  | -2,73E-11 |
| AP                      | molc H+ eq  | 3,64E-01  | 2.24E-02  | 2,69E-03  | 2.64E-02  | NR         | 0  | -3,42E-01 |
| EP- freshwater          | kg P eq     | 4,50E-05  | 1.13E-05  | 1,88E-06  | 1.54E-05  | NR         | 0  | -4,06E-05 |
| EP -marine              | kg N eq     | 1,45E-01  | 1.11E-02  | 1,26E-03  | 1.29E-02  | NR         | 0  | -1,37E-01 |
| EP - terrestrial        | molc N eq   | 1,61E+00  | 1.23E-01  | 1,40E-02  | 1.43E-01  | NR         | 0  | -1,51E+00 |
| POCP                    | kg NMVOC eq | 4,79E-01  | 2.12E-02  | 3,53E-03  | 2.50E-02  | NR         | 0  | -4,51E-01 |
| ADP-M&M <sup>2</sup>    | kg Sb-Eq    | 2,77E-06  | 2.05E-07  | 3,42E-08  | 2.79E-07  | NR         | 0  | -2,59E-06 |
| ADP-fossil <sup>2</sup> | MJ          | 2,48E+03  | 4.21E+01  | 7,02E+00  | 5.73E+01  | NR         | 0  | -2,35E+03 |
| WDP <sup>2</sup>        | $m^3$       | 2,16E+00  | 3.73E-02  | 6,23E-03  | 5.08E-02  | NR         | 0  | -2,04E+00 |

GWP-total: Global Warming Potential; GWP-fossil: Global Warming Potential fossil fuels; GWP-biogenic: Global Warming Potential biogenic; GWP-LULUC: Global Warming Potential and use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential, Accumulated Exceedance; EP-freshwater: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. EP-marine: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestrial: Eutrophication potential, Accumulated Exceedance; POCP: Formation potential of tropospheric ozone; ADP-M&M: Abiotic depletion potential for non-fossil resources (minerals and metals); ADP-fossil: Abiotic depletion potential for fossil resources; WDP: Water deprivation potential, deprivation weighted water counsumption

Reading example: 9.0 E-03 = 9.0\*10-3 = 0.009

### Additional environmental impact indicators

| Indicator           | Unit              | A1-A3    | A4       | C1       | <b>C2</b> | <b>C</b> 3 | C4 | D         |
|---------------------|-------------------|----------|----------|----------|-----------|------------|----|-----------|
| PM                  | Disease incidence | 2,65E-06 | 8,02E-08 | 3,05E-08 | 9,99E-08  | NR         | 0  | -2,49E-06 |
| IRP1                | kBq U235 eq.      | 5,88E-01 | 1,18E-02 | 1,97E-03 | 1,60E-02  | NR         | 0  | -5,56E-01 |
| ETP-fw <sup>2</sup> | CTUe              | 1,21E+03 | 3,02E+01 | 5,03E+00 | 4,10E+01  | NR         | 0  | -1,15E+03 |
| HTP-c <sup>2</sup>  | CTUh              | 1,56E-08 | 6,12E-10 | 1,02E-10 | 8,33E-10  | NR         | 0  | -1,47E-08 |
| HTP-nc <sup>2</sup> | CTUh              | 4,91E-07 | 2,72E-08 | 4,55E-09 | 3,70E-08  | NR         | 0  | -4,61E-07 |
| SQP <sup>2</sup>    | Dimensionless     | 3,50E+01 | 1,76E+01 | 2,93E+00 | 2,39E+01  | NR         | 0  | -2,99E+01 |

PM: Particulate matter emissions; IRP: Ionising radiation, human health; ETP-fw: Ecotoxicity (freshwater); ETP-c: Human toxicity, cancer effects; HTP-nc: Human toxicity, non-cancer effects; SQP: Land use related impacts / soil quality

<sup>&</sup>lt;sup>1</sup> This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

 $<sup>^2</sup>$  The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator



### Resource use

| Parameter | Unit  | A1-A3    | A4       | C1       | C2       | С3 | C4 | D         |
|-----------|-------|----------|----------|----------|----------|----|----|-----------|
| RPEE      | MJ    | 1,45E+02 | 3,06E+00 | 5,11E-01 | 4,17E+00 | NR | 0  | -1,37E+02 |
| RPEM      | MJ    | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | NR | 0  | 0,00E+00  |
| TPE       | MJ    | 1,45E+02 | 3,06E+00 | 5,11E-01 | 4,17E+00 | NR | 0  | -1,37E+02 |
| NRPE      | MJ    | 2,50E+03 | 4,23E+01 | 7,05E+00 | 5,75E+01 | NR | 0  | -2,36E+03 |
| NRPM      | MJ    | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | NR | 0  | 0,00E+00  |
| TRPE      | MJ    | 2,50E+03 | 4,23E+01 | 7,05E+00 | 5,75E+01 | NR | 0  | -2,36E+03 |
| SM        | kg    | 2,86E+02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | NR | 0  | -2,71E+02 |
| RSF       | MJ    | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | NR | 0  | 0,00E+00  |
| NRSF      | MJ    | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | NR | 0  | 0,00E+00  |
| W         | $m^3$ | 9,80E-02 | 3,36E-03 | 5,60E-04 | 4,56E-03 | NR | 0  | -9,18E-02 |

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Nonrenewable primary energy resources used as energy carrier; NRPM Nonrenewable primary energy resources used as materials; TRPE Total use of non-renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non-renewable secondary fuels; W Use of net fresh water.

### End of life - Waste

| Parameter | Unit | A1-A3    | A4       | C1       | C2       | С3 | C4 | D         |
|-----------|------|----------|----------|----------|----------|----|----|-----------|
| HW        | kg   | 5,07E-10 | 1,31E-10 | 2,18E-11 | 1,78E-10 | NR | 0  | -4,57E-10 |
| NHW       | kg   | 2,79E+01 | 6,44E-03 | 1,07E-03 | 8,76E-03 | NR | 0  | -2,65E+01 |
| RW        | kg   | 4,51E-03 | 7,91E-05 | 1,32E-05 | 1,08E-04 | NR | 0  | -4,27E-03 |

HW Hazardous waste disposed; NHW Non-hazardous waste disposed; RW Radioactive waste disposed.

### End of life – output flow

| Parameter | Unit | A1-A3    | A4       | <b>C1</b> | C2       | С3 | C4 | D        |
|-----------|------|----------|----------|-----------|----------|----|----|----------|
| CR        | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | NR | 0  | 0,00E+00 |
| MR        | kg   | 0,00E+00 | 0,00E+00 | 1,00E+03  | 0,00E+00 | NR | 0  | 0,00E+00 |
| MER       | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | NR | 0  | 0,00E+00 |
| EEE       | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | NR | 0  | 0,00E+00 |
| ETE       | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | NR | 0  | 0,00E+00 |

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy.

### Information describing the biogenic carbon content at the factory gate

| Biogenic carbon content                               | Unit | Value    |
|-------------------------------------------------------|------|----------|
| Biogenic carbon content in product                    | kg C | 0,00E+00 |
| Biogenic carbon content in the accompanying packaging | kg C | 0,00E+00 |



### Additional requirements

### Location based electricity mix from the use of electricity in manufacturing

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess (foreground/core) per functional unit.

| National electricity grid     | Data source   | GWP <sub>total</sub><br>[g CO2 -eq/kWh] |
|-------------------------------|---------------|-----------------------------------------|
| Electricity grid mix, Iceland | Sphera LCA FE | 40,3                                    |

### Additional environmental impact indicators required for construction products

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

| Parameter | Unit | A1-A3    | A4       | C1       | C2       | C3 | C4 | D         |
|-----------|------|----------|----------|----------|----------|----|----|-----------|
| GWP-IOBC  | kg   | 3,99E+01 | 3,11E+00 | 5,30E-01 | 4,23E+00 | NR | 0  | -3,72E+01 |

**GWP-IOBC** Global warming potential calculated according to the principle of instantaneous oxidation.

### Hazardous substances

The declaration is based upon reference to threshold values and/or test results and/or material safety data sheets provided to EPD verifiers. Documentation available upon request to EPD owner.

The product contains no substances given by the REACH Candidate list.



# **Bibliography**

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations Principles and procedures

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products

Emission Factor Documentation for AP-42, Section 11.1 Hot Mix Asphalt Plants-Final Report, U.S. EPA, 2004

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products

Life cycle assessment of asphalt (2023). EFLA Consulting Engineers

NPCR Part A: Construction products and services. Ver. 2.0, 24.03.2021 EPD Norway

NPCR Part B for Asphalt, Ver. 1.1, 20.01.2022, EPD Norway

Sphera, [Online], <a href="https://sphera.com">https://sphera.com</a>

|                         | Program Operator                    | tlf        | +47 23 08 80 00                    |
|-------------------------|-------------------------------------|------------|------------------------------------|
| © epd-norway            | The Norwegian EPD Foundation        |            |                                    |
| Global Program Operator | Post Box 5250 Majorstuen, 0303 Oslo | e-post:    | post@epd-norge.no                  |
|                         | Norway                              | web        | www.epd-norge.no                   |
|                         | Publisher                           | tlf        | +47 23 08 80 00                    |
| © epd-norway            | The Norwegian EPD Foundation        |            |                                    |
| Global Program Operator | Post Box 5250 Majorstuen, 0303 Oslo | e-post:    | post@epd-norge.no                  |
|                         | Norway                              | web        | www.epd-norge.no                   |
|                         | Owner of the declaration            | tlf        | +354 565 2030                      |
| COLAS                   | Colas Ísland ehf.                   | Fax        |                                    |
|                         | Gullhella 1, 221 Hafnarfjörður      | e-post:    | colas@colas.is                     |
|                         | Iceland                             | web        | www.colas.is/                      |
|                         | Author of the life cycle assesment  | tlf        | +354 412 6000                      |
| 0.0                     | EFLA Consulting Engineers           | Fax        |                                    |
| • EFLA                  | Lyngháls 4, 110 Reykjavík           | e-post:    | efla@efla.is                       |
|                         | Iceland                             | web        | www.efla.is                        |
| EDD PLATFORM  VERIFIED  | ECO Platform<br>ECO Portal          | web<br>web | www.eco-platform.org<br>ECO Portal |