# Environmental product declaration in accordance with ISO 14025 and EN 15804+A2 ABT, Skanska Industrial Solutions, Varberg Asfaltverk # **SKANSKA** The Norwegian EPD Foundation # Owner of the declaration: Skanska Industrial Solutions AB #### Product ABT, Skanska Industrial Solutions, Varberg Asfaltverk # **Declared unit:** 1 tonne # This declaration is based on Product Category CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 025:2022 Part B for Asphalt # Program operator: The Norwegian EPD Foundation #### **Declaration number:** NEPD-6201-5469-EN # Registration number: NEPD-6201-5469-EN Issue date: 05.03.2024 **Valid to:** 05.03.2029 # **EPD** software: LCAno EPD generator ID: 232774 # **General information** #### Product ABT, Skanska Industrial Solutions, Varberg Asfaltverk # **Program operator:** Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no # **Declaration number:** NEPD-6201-5469-EN # This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 025:2022 Part B for Asphalt # Statement of liability: The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. #### Declared unit: 1 tonne ABT, Skanska Industrial Solutions, Varberg Asfaltverk #### **Declared unit with option:** A1,A2,A3,C1,C2,C3,C4,D #### Functional unit: The term "declared unit" is used in this EPD, as the entire life cycle is not included in this EPD. ### General information on verification of EPD from EPD tools: Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools #### **Verification of EPD tool:** Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Third party verifier: Martin Erlandsson, IVL Swedish Res. Inst (no signature required) #### Owner of the declaration: Skanska Industrial Solutions AB Contact person: Henrik Sjöholm Phone: +46 10-448 71 06 e-mail: Henrik.Sjoholm@Skanska.se #### Manufacturer: Skanska Industrial Solutions AB Warfvinges väg 25 112 74 Stockholm, Sweden #### Place of production: Varberg , Sweden #### Management system: ISO 14001, ISO 9001 # Organisation no: 556793-1638 Issue date: 05.03.2024 Valid to: 05.03.2029 # Year of study: 2024 # **Comparability:** EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context. # **Development and verification of EPD:** The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. Developer of EPD: Paulina Johansson Reviewer of company-specific input data and EPD: Linnea Skogfors Approved: Håkon Hauan Managing Director of EPD-Norway # **Product** # **Product description:** Hot mix wearing course for roads #### **Product specification** ABT | Materials | kg | % | |--------------------------|---------|-------| | Aggregate | 939,90 | 93,99 | | Amin, CAS Nr. 68910-93-0 | 0,10 | 0,01 | | Bitumen | 60,00 | 6,00 | | Total | 1000,00 | | #### **Technical data:** ABT wearing course according to Swedish road administration specification TDOK 2013:0529 #### Market: Sweden ### Reference service life, product Depending on traffic, road design and climate conditions # Reference service life, construction work Depending on traffic, road design and climate conditions # LCA: Calculation rules #### **Declared unit:** 1 tonne ABT, Skanska Industrial Solutions, Varberg Asfaltverk # **Cut-off criteria:** All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances. #### Allocation The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. # Data quality: Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below. eurobitume (2019) is not considered conservative according to EN 15804, but is used due to common practice in other LCA tools, EPDs and PCR. Specific environmental data from EPDs (Skanska EPD), in accordance with EN 15804, have been used for aggregates. Similarly, specific data have been used for transport distances from supplier to asphalt plant and for all factory data (energy use, waste quantities, etc.). For all other data, generic data available in the EPD tool have been used. Transport of reclaimed asphalt from the road to asphalt factory includes a return distance. For bitumen, generic data from Eurobitume is used because specific data cannot be determined from the mix of bitumen suppliers according to EU standards etc. used by Skanska. Environmental impact for reclaimed asphalt falls to previous product systems until arrival at the asphalt plant. The asphalt plant uses electricity marked "Good Environmental Choice". | Materials | Source | Data quality | Year | |--------------------------|-------------------|-------------------------|------| | Aggregate | LCA.no | Database | 2021 | | Aggregate | NEPD-4241-3478-SE | EPD | 2021 | | Amin, CAS Nr. 68910-93-0 | ecoinvent 3.6 | Database | 2020 | | Bitumen | Eurobitume (2022) | Life Cycle<br>Inventory | 2022 | | Bitumen | LCA.no | Database | 2021 | # System boundaries (X=included, MND=module not declared, MNR=module not relevant) | Product stage | | | Constr<br>installati | uction<br>on stage | | Use stage | | | | | End of li | ife stage | | Beyond the system boundaries | | | |------------------|-----------|---------------|----------------------|--------------------|-----|-------------|--------|-------------|-------------------------|------------------------------|--------------------------|-----------------------------------|-----------|------------------------------|----------|----------------------------------------| | Raw<br>materials | Transport | Manufacturing | Transport | Assembly | Use | Maintenance | Repair | Replacement | Refu <i>r</i> b ishment | Operational<br>energy<br>use | Operational<br>water use | De-<br>construction<br>demolition | Transport | Waste<br>processing | Disposal | Reuse-Recovery-<br>Recycling-potential | | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | | Χ | Χ | Χ | MND X | Χ | Χ | Χ | X | # **System boundary:** In accordance with EN 15804, the modules A1-A3, C, D are declared in this EPD. Modules A1-A3 represent a "cradle to gate" analysis for the asphalt production, and Modules C and D are reviewing the end-of-life stage for the product and its reuse, recovery and recycling potential. Declaration of the RSL is only possible if module B is included and is therefore not assessed in this study. The flowchart below visualizes processes in the life cycle of the asphalt mass. # Additional technical information: 40% reclaimed asphalt is included. Generic waste data from Skanskas asphalt production is used in this EPD. # LCA: Scenarios and additional technical information The following information describe the scenarios in the different modules of the EPD. | De-construction demolition (C1) | Unit | Value | | | | |----------------------------------------------------------------|------------------------------------------|---------------|-------------------------|-------|------------------------| | Milling machine, diesel consumption (L) | L/DU | 0,40 | | | | | Water (L) | kg/DU | 12,00 | | | | | Transport to waste processing (C2) | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit | Value<br>(Liter/tonne) | | Truck, over 32 tonnes, EURO 6 (km) | 55,0 % | 35 | 0,023 | l/tkm | 0,81 | | Waste processing (C3) | Unit | Value | | | | | Transfer or release of energy stored in bitumen (kg) | kg | 60,00 | | | | | Waste treatment, asphalt to recycling (kg) | kg | 435,70 | | | | | Wear of asphalt (kg) | kg | 4,40 | | | | | Disposal (C4) | Unit | Value | | | | | Disposal, landfilling of asphalt (kg) | kg/DU | 0,00 | | | | | Benefits and loads beyond the system boundaries (D) | Unit | Value | | | | | Substitution of primary asphalt with net recycled asphalt (kg) | kg | 39,70 | | | | # **LCA: Results** The LCA results are presented below for the declared unit defined on page 2 of the EPD document. | Enviro | Environmental impact | | | | | | | | | | | | | |------------|----------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|--|--|--| | | Indicator | Unit | A1 | A2 | A3 | C1 | C2 | C3 | C4 | D | | | | | | GWP-total | kg CO <sub>2</sub> -eq | 1,07E+01 | 3,52E-01 | 1,03E+01 | 1,43E+00 | 3,05E+00 | 4,10E-01 | 0,00E+00 | -1,70E+00 | | | | | | GWP-fossil | kg CO <sub>2</sub> -eq | 1,07E+01 | 3,52E-01 | 1,02E+01 | 1,43E+00 | 3,05E+00 | 4,10E-01 | 0,00E+00 | -1,69E+00 | | | | | | GWP-biogenic | kg CO <sub>2</sub> -eq | 1,56E-02 | 2,67E-04 | 4,22E-03 | 4,81E-04 | 2,31E-03 | 7,71E-05 | 0,00E+00 | 0,00E+00 | | | | | | GWP-luluc | kg CO <sub>2</sub> -eq | 1,53E-02 | 1,07E-04 | 1,06E-02 | 1,19E-04 | 9,28E-04 | 3,24E-05 | 0,00E+00 | -1,35E-03 | | | | | <b>(3)</b> | ODP | kg CFC11 -eq | 8,85E-07 | 8,49E-08 | 1,76E-06 | 3,09E-07 | 7,35E-07 | 8,89E-08 | 0,00E+00 | -2,50E-06 | | | | | CET . | AP | mol H+ -eq | 1,49E-01 | 1,13E-03 | 8,96E-02 | 1,50E-02 | 9,80E-03 | 4,30E-03 | 0,00E+00 | -1,71E-02 | | | | | - | EP-FreshWater | kg P -eq | 2,31E-04 | 2,80E-06 | 2,60E-04 | 5,53E-06 | 2,43E-05 | 1,50E-06 | 0,00E+00 | -3,54E-05 | | | | | | EP-Marine | kg N -eq | 4,50E-02 | 2,48E-04 | 3,44E-02 | 6,60E-03 | 2,15E-03 | 1,90E-03 | 0,00E+00 | -3,26E-03 | | | | | - | EP-Terrestial | mol N -eq | 5,93E-01 | 2,77E-03 | 3,86E-01 | 7,24E-02 | 2,40E-02 | 2,08E-02 | 0,00E+00 | -3,69E-02 | | | | | | POCP | kg NMVOC -eq | 1,44E-01 | 1,09E-03 | 1,00E-01 | 1,99E-02 | 9,42E-03 | 5,73E-03 | 0,00E+00 | -2,02E-02 | | | | | | ADP-minerals&metals <sup>1</sup> | kg Sb-eq | 5,65E-05 | 6,26E-06 | 6,27E-05 | 2,31E-06 | 5,43E-05 | 6,31E-07 | 0,00E+00 | -1,50E-05 | | | | | | ADP-fossil <sup>1</sup> | MJ | 1,84E+03 | 5,72E+00 | 1,43E+02 | 1,97E+01 | 4,95E+01 | 5,66E+00 | 0,00E+00 | -1,59E+02 | | | | | <u>%</u> | WDP <sup>1</sup> | m <sup>3</sup> | 2,01E+01 | 4,38E+00 | 1,58E+03 | 5,42E+00 | 3,79E+01 | 1,20E+00 | 0,00E+00 | -1,29E+03 | | | | GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption # **Remarks to environmental impacts** No addidtional remarks to environmental impacts. <sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" <sup>\*</sup>INA Indicator Not Assessed <sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator | Addition | al environme | ntal impact indicators | | | | | | | | | |-----------------------------------------------|---------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|-----------| | In | dicator | Unit | A1 | A2 | A3 | C1 | C2 | C3 | C4 | D | | | PM | Disease incidence | 1,09E-06 | 2,83E-08 | 3,82E-06 | 3,95E-07 | 2,45E-07 | 1,14E-07 | 0,00E+00 | -1,08E-07 | | | IRP <sup>2</sup> | kgBq U235 -eq | 2,15E-01 | 2,50E-02 | 7,82E-01 | 8,47E-02 | 2,16E-01 | 2,43E-02 | 0,00E+00 | -7,98E-01 | | | ETP-fw <sup>1</sup> | CTUe | 4,35E+03 | 4,18E+00 | 5,28E+02 | 1,08E+01 | 3,62E+01 | 3,09E+00 | 0,00E+00 | -1,01E+02 | | 46. *<br>** * * * * * * * * * * * * * * * * * | HTP-c <sup>1</sup> | CTUh | 6,96E-09 | 0,00E+00 | 8,47E-09 | 4,17E-10 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -9,92E-10 | | 48 | HTP-nc <sup>1</sup> | CTUh | 1,31E-07 | 4,04E-09 | 2,41E-07 | 1,01E-08 | 3,50E-08 | 3,05E-09 | 0,00E+00 | -2,49E-08 | | | SQP <sup>1</sup> | dimensionless | 3,17E+02 | 6,55E+00 | 7,43E+02 | 2,51E+00 | 5,68E+01 | 7,19E-01 | 0,00E+00 | -3,59E+01 | PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless) <sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed <sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator <sup>2.</sup> This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. | Resource use | | | | | | | | | | | |--------------|----------|-------|----------|----------|----------|----------|----------|-----------|----------|-----------| | | ndicator | Unit | A1 | A2 | A3 | C1 | C2 | C3 | C4 | D | | | PERE | MJ | 9,76E+00 | 7,19E-02 | 1,65E+02 | 1,16E-01 | 6,23E-01 | 3,06E-02 | 0,00E+00 | -8,82E+00 | | | PERM | MJ | 0,00E+00 | ីក្ន | PERT | МЈ | 9,76E+00 | 7,19E-02 | 1,65E+02 | 1,16E-01 | 6,23E-01 | 3,06E-02 | 0,00E+00 | -8,82E+00 | | | PENRE | МЈ | 2,64E+02 | 5,76E+00 | 1,44E+02 | 1,96E+01 | 4,99E+01 | 5,66E+00 | 0,00E+00 | -1,59E+02 | | e <u>A</u> . | PENRM | МЈ | 2,36E+03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -2,36E+03 | 0,00E+00 | 0,00E+00 | | <b>I</b> | PENRT | МЈ | 1,84E+03 | 5,76E+00 | 1,44E+02 | 1,96E+01 | 4,99E+01 | -2,36E+03 | 0,00E+00 | -1,59E+02 | | | SM | kg | 4,00E+02 | 1,97E-03 | 1,38E-01 | 9,91E-03 | 1,71E-02 | 2,78E-03 | 0,00E+00 | -3,36E+00 | | 2 | RSF | MJ | 1,76E-02 | 2,52E-03 | 3,66E-01 | 3,38E-03 | 2,18E-02 | 7,53E-04 | 0,00E+00 | -9,65E-02 | | | NRSF | MJ | 2,78E-03 | 8,44E-03 | 2,56E-01 | 3,92E-02 | 7,32E-02 | 1,11E-02 | 0,00E+00 | -4,01E-02 | | <b>%</b> | FW | $m^3$ | 6,86E-02 | 6,51E-04 | 2,62E-01 | 1,31E-02 | 5,64E-03 | 2,91E-04 | 0,00E+00 | -7,82E-02 | PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water <sup>&</sup>quot;Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed | End of li | End of life - Waste | | | | | | | | | | | | | |-----------|---------------------|---------|------|----------|----------|----------|----------|----------|----------|----------|-----------|--|--| | | Inc | dicator | Unit | A1 | A2 | A3 | C1 | C2 | C3 | C4 | D | | | | Ē | Ì | HWD | kg | 7,04E-03 | 3,13E-04 | 1,06E-01 | 5,92E-04 | 2,71E-03 | 1,67E-04 | 0,00E+00 | -6,39E-02 | | | | Ē | Ì | NHWD | kg | 4,39E-01 | 4,97E-01 | 1,05E+00 | 2,41E-02 | 4,30E+00 | 6,70E-03 | 0,00E+00 | -2,06E-01 | | | | [ | ā . | RWD | kg | 2,00E-02 | 3,90E-05 | 9,42E-04 | 1,37E-04 | 3,38E-04 | 3,93E-05 | 0,00E+00 | -1,17E-03 | | | HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed "Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed | End of life - Outpu | End of life - Output flow | | | | | | | | | | | | | |---------------------|---------------------------|------|----------|----------|----------|----------|----------|----------|----------|-----------|--|--|--| | Indica | tor | Unit | A1 | A2 | A3 | C1 | C2 | C3 | C4 | D | | | | | <b>∅</b> D | CRU | kg | 0,00E+00 | | | | \$> | MFR | kg | 1,74E-04 | 2,77E-05 | 3,60E-02 | 3,70E-05 | 2,40E-04 | 4,36E+02 | 0,00E+00 | -1,43E-02 | | | | | DF | MER | kg | 5,07E-04 | 1,71E-03 | 5,98E-02 | 9,72E-03 | 1,48E-02 | 8,46E-06 | 0,00E+00 | -1,01E-03 | | | | | 50 | EEE | MJ | 2,12E-03 | 2,98E-04 | 2,11E-02 | 1,16E-04 | 2,58E-03 | 2,90E-05 | 0,00E+00 | -3,22E-01 | | | | | D.B. | EET | MJ | 3,21E-02 | 4,53E-03 | 3,19E-01 | 1,75E-03 | 3,92E-02 | 4,39E-04 | 0,00E+00 | -4,87E+00 | | | | CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal "Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009" \*INA Indicator Not Assessed | Biogenic Carbon Content | | | | | | | | | | | |-------------------------|---------------------|--|--|--|--|--|--|--|--|--| | Unit | At the factory gate | | | | | | | | | | | kg C | 0,00E+00 | | | | | | | | | | | kg C | 0,00E+00 | | | | | | | | | | | | kg C | | | | | | | | | | Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2 # **Additional requirements** # Greenhouse gas emissions from the use of electricity in the manufacturing phase National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3). | Electricity mix | Data source | Amount | Unit | |---------------------------|---------------|--------|--------------| | Electricity, Norway (kWh) | ecoinvent 3.6 | 23,68 | g CO2-eg/kWh | # **Dangerous substances** The product contains no substances given by the REACH Candidate list. #### **Indoor environment** # **Additional Environmental Information** | Additional environme | Additional environmental impact indicators required in NPCR Part A for construction products | | | | | | | | | | | | |----------------------|----------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|--|--|--| | Indicator | Unit | A1 | A2 | A3 | C1 | C2 | C3 | C4 | D | | | | | GWPIOBC | kg CO <sub>2</sub> -eq | 1,06E+01 | 3,50E-01 | 1,03E+01 | 1,35E+00 | 3,03E+00 | 3,88E-01 | 0,00E+00 | -1,65E+00 | | | | GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation. # **Bibliography** ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines. EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products. ISO 21930:2017 Core rules for environmental product declarations of construction products. ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories. Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21. Iversen et al., (2021) EPD generator for NPCR 025 Part B for Asphalt, Background information for EPD generator application and LCA data, LCA.no Report number: 10.21. NPCR Part A: Construction products and services. Ver. 2.0, 24.03.2021 EPD Norway. NPCR 025 Part B for asphalt, Ver. 1.1, 20.01.2022, EPD Norway. | and narway | Program operator and publisher | Phone: | +47 23 08 80 00 | |-------------------------|---------------------------------------------|------------|----------------------------| | epd-norway | The Norwegian EPD Foundation | e-mail: | post@epd-norge.no | | Global Program Operator | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web: | www.epd-norge.no | | | Owner of the declaration: | Phone: +4 | 46 10-448 71 06 | | ΚΔΝSΚΔ | Skanska Industrial Solutions AB | e-mail: He | enrik. Sjoholm@Skanska. se | | ITAITE | Warfvinges väg 25, 112 74 Stockholm | web: w | ww.skanska.se | | | Author of the Life Cycle Assessment | Phone: | +47 916 50 916 | | (LCA) | LCA.no AS | e-mail: | post@lca.no | | .no | Dokka 6B, 1671 | web: | www.lca.no | | | Developer of EPD generator | Phone: | +47 916 50 916 | | (LCA) | LCA.no AS | e-mail: | post@lca.no | | .no | Dokka 6B,1671 Kråkerøy | web: | www.lca.no | | EGG PLATFORM | ECO Platform | web: | www.eco-platform.org | | VERIFIED | ECO Portal | web: | ECO Portal | | | | | |