

# ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN15804 +A2

Tørket sand (dry sand), size: 0-8 mm



**Owner of the declaration:** Stange Industri AS

Product name: Tørket sand (dry sand), size – 0-8 mm

**Declared unit:** 1 ton of Tørket sand (dry sand) size - 0-8 mm

**Product category /PCR:** NPCR 018 Part B for natural stone products, aggregates, and fillers (references to EN15804+A2) **Program operator and publisher:** The Norwegian EPD foundation

Declaration number: NEPD-6492-5753-EN

**Registration number:** NEPD-6492-5753-EN

Issue date 02.05.2024

Valid to 02.05.2029



The Norwegian EPD Foundation



# General information

Product Tørket sand (dry sand), size – 0-8 mm

# **Programme Operator**

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Tel: +47 23 08 80 00 e-mail: post@epd-norge.no

#### **Declaration Number**

NEPD-6492-5753-EN

# This declaration is based on Product Category Rules

NPCR 018 Part B for natural stone products, aggregates, and fillers (references to EN15804+A2)

# Statements

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidence.

Declared unit 1 ton of Tørket sand (dry sand), size - 0-8 mm

Functional unit Not relevant

# Conversion factor to mass

Not relevant

# Verification

Independent verification of the declaration and data, according to ISO14025:2006

internal

external

Juli hyro Skillerad

Julie Lyslo Skullestad

Independent verifier approved by EPD Norway

# Owner of the declaration

Stange Industri AS Contact person: Andreas Kaspersen Phone: +47 97177089 e-mail: andreas@stangeindustri.no

# Manufacturer

Stange Industri AS Administrative Office Bangsgate 7, 3019 Drammen, Norway

# Place of production

Follummoveien 38, 3516 Hønesfoss, Norway

# Management system

#### Organization no 938 737 797

Issue date 02.05.2024

Valid to 02.05.2029

Year of study 2022-2023

# Comparability

EPDs from other programmes than EPD-Norway may not be comparable.

# The EPD has been worked out by

Modi Elisa & Johansen B.H. of Energiråd AS

Approved

Manager of EPD Norway



# Product

# **Product description**

**Stange Industri AS** is a significant supplier to the construction industry in Norway. We are based at Kilemoen in Hønefoss and are one of the largest sand deposits in Eastern Norway. The sand at Kilemoen is very suitable for concrete production. For the concrete in the new opera building in Bjørvika, it was chosen to use sand from this department.

At Kilemoen, we also have a large drying plant for sand, and we are the country's largest supplier of dried sand to the mortar industry. Other areas of application for our sand products are plastering and brickwork, construction of golf and football pitches as well as impact and sandbox sand for nurseries. Annual production is approx. 350,000 tons.

# **Product specification**

Tørket sand (dry sand), size – 0-8 mm

| Material (s) | tons | %       |
|--------------|------|---------|
| Sand         | 1    | 100.00% |
| Packaging    | -    | < 1.00% |

# Technical data

As a major supplier of sand and stone products, we are required to strictly control our production. We are certified in accordance with NS-EN 12620 and NS-EN 13043 and we use the state-appointed control body Kontrollrådet for concrete products to inspect and audit our systems. For more information see – <u>Stange Industri AS</u>.

#### Market

Norway

# Reference service life, product

Not relevant

#### Reference service life, building

Same as for the building



# LCA: Calculation rules

#### Declared unit

1 ton of dry sand 0-8 mm

# Data quality

Both primary and secondary data were used in the LCA. Site-specific foreground data were provided by Stange Industri AS and is based on the production activities of 2022. These data were obtained from the bill or materials. For all processes for which primary data was not available, generic data from the ecoinvent database v3.8 (2021) were assumed. All generic data used for the analysis are not older than 10 years old. Where necessary, the used generic data were modified to ensure technological, temporal, and geographical consistency. Modelling and calculations were conducted via OpenLCA equipped with v.3.8 of the Ecoinvent database with LCIA and classification factors conforming to EN 15804+A2.

# Allocation

The allocation is made in accordance with the requirements of EN 15804: A2. Energy and water inputs and waste generation during production were allocated equally among all products on mass basis. Effect of primary production of recycled materials were allocated to the main product in which the material is used. No recycled materials are used in the manufacture of this product.

# Cut-off criteria

All major raw materials and essential energy are included. The production processes for raw materials and energy flows with less than 1% contributions are excluded. This cut-off criteria do not apply for hazardous materials and substances. Machines and facilities or capital goods required to produce the declared unit are excluded.

# Variation in environmental impacts

This EPD is an average EPD representative for Tørket sand (dry sand) of sizes 0/0.5 mm, 0.5/1mm, 1/2 mm and 2/4 mm produced by Stange Industri AS at Kilemoen drying plant in Hønefoss, Norway. The presented results are valid for an average order of Torket sand (dry sand). The three types of sand are produced similarly, and energy consumption are similarly as well. The variation in the environmental impacts of the three types of sand is therefore insignificant and is expected to with within the 10% threshold.

# System boundary

The scope of this analysis is cradle-to-grave. The modules covered include extraction and semi-processing or raw required raw materials (A1), transportation of the materials to production site and within the mining area (A2), processing/drying of the studied products (A3), and transportation of the dried sand to potential customers (A4).



#### Figure 1 System boundaries (cradle-to-fate with options)



# System boundaries (X=included, MND= module not declared, MNR=module not relevant)

| Product stage |           | Assen         | nbly stage |          | Use stage |             |        | E           | End of        | life sta               | age                   | Benefits & loads<br>beyond system<br>boundary |           |                  |          |                                        |
|---------------|-----------|---------------|------------|----------|-----------|-------------|--------|-------------|---------------|------------------------|-----------------------|-----------------------------------------------|-----------|------------------|----------|----------------------------------------|
| Raw materials | Transport | Manufacturing | Transport  | Assembly | Use       | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition                    | Transport | Waste processing | Disposal | Reuse-Recovery-Recycling-<br>potential |
| A1            | A2        | A3            | A4         | A5       | B1        | B2          | B3     | B4          | B5            | B6                     | B7                    | C1                                            | C2        | C3               | C4       | D                                      |
| Х             | Х         | Х             | Х          | MND      | MND       | MND         | MND    | MND         | MND           | MND                    | MND                   | MND                                           | MND       | MND              | MND      | MND                                    |

# LCA scenarios and additional technical information

The product stage is reported in a cumulative format i.e., A1-A3. The scenario describing the delivery of the produced sad to potential customers are as follows – it is assumed that the sand is transported by truck to a potential customer located 300 km away from the site of production. See table below for details.

| Transport from production site to potential<br>customer (A4) | Capacity (%) | Distance (km) | Fuel/Energy<br>efficiency | Unit  | Value (L/t) |
|--------------------------------------------------------------|--------------|---------------|---------------------------|-------|-------------|
| truck, over 32 tons, EURO 5                                  | 53.33%       | 300           | 0.023                     | l/tkm | 6.90        |



# LCA: Results

The LCA results per 1 ton of Tørket sand (dry sand) produced.

#### Core environmental impacts

| Indicator        | Unit        | A1-A3    | A4       |
|------------------|-------------|----------|----------|
| GWP - total      | kg CO2 eq   | 1.53E+01 | 2.61E+01 |
| GWP - fossil     | kg CO2 eq   | 1.53E+01 | 2.61E+01 |
| GWP - biogenic   | kg CO2 eq   | 2.59E-02 | 4.06E-02 |
| GWP - luluc      | kg CO2 eq   | 1.36E-03 | 7.82E-03 |
| ODP              | kg CFC11 eq | 1.23E-06 | 6.51E-06 |
| AP               | molc H+ eq  | 6.23E-02 | 8.31E-02 |
| EP- freshwater   | kg P eq     | 3.67E-04 | 1.71E-03 |
| EP -marine       | kg N eq     | 2.33E-02 | 1.87E-02 |
| EP - terrestrial | molc N eq   | 2.55E-01 | 2.03E-01 |
| POCP             | kg NMVOC eq | 6.97E-02 | 7.83E-02 |
| ADP - M&M        | kg Sb-Eq    | 8.31E-06 | 6.02E-05 |
| ADP - fossil     | MJ          | 8.17E+01 | 4.27E+02 |
| WDP              | m3          | 1.02E+01 | 2.17E+00 |

**GWP-total**: Global Warming Potential; **GWP-fossil**: Global Warming Potential fossil fuels; **GWP-biogenic**: Global Warming Potential land use and land use change; **ODP**: Depletion potential of the stratospheric ozone layer; **AP**: Acidification potential, Accumulated Exceedance; **EP-freshwater**: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. **EP-marine**: Eutrophication potential, fraction of nutrients reaching freshwater end compartment freshwater end compartment; **EP-terrestrial**: Eutrophication potential for non-fossil resources (minerals and metals); **ADP-fossil**: Abiotic depletion potential for fossil resources; **WDP**: Water deprivation potential, deprivation weighted water consumption

#### Additional environmental impact indicators

| Indicator | Unit              | A1-A3     | A4       |
|-----------|-------------------|-----------|----------|
| PM        | Disease incidence | 1.11E-06  | 2.28E-06 |
| IRP       | kBq U235 eq.      | 4.92E-01  | 2.15E+00 |
| ETP-fw    | CTUe              | 5.72E-01  | 1.79E+01 |
| HTP-c     | CTUh              | 1.42E-09  | 7.71E-09 |
| HTP-nc    | CTUh              | 5.92E-08  | 4.89E-07 |
| SQP       | Dimensionless     | -3.73E-01 | 6.40E+02 |

**PM:** Particulate matter emissions; **IRP**: Ionising radiation, human health; **ETP-fw**: Ecotoxicity (freshwater); **ETP-c**: Human toxicity, cancer effects; **HTP-nc**: Human toxicity, non-cancer effects; **SQP**: Land use related impacts / soil quality

#### **Resource use**

| Indicator | Unit | A1-A3    | A4       |
|-----------|------|----------|----------|
| RPEE      | MJ   | 3.23E+01 | 4.19E+00 |
| RPEM      | MJ   | 3.83E-01 | 1.21E+00 |
| TPE       | MJ   | 3.27E+01 | 5.40E+00 |
| NRPE      | MJ   | 9.86E+00 | 4.01E+01 |
| NRPM      | MJ   | 7.18E+01 | 3.87E+02 |
| TRPE      | MJ   | 8.17E+01 | 4.27E+02 |
| SM        | kg   | 1.17E-01 | 3.74E-01 |
| RSF       | MJ   | 2.53E-02 | 1.05E-01 |
| NRSF      | MJ   | 1.22E-01 | 3.20E-01 |
| W         | m3   | 2.37E-01 | 5.18E-02 |

**RPEE:** Renewable primary energy resources used as energy carrier; **RPEM:** Renewable primary energy resources used as raw materials; **TPE:** Total use of renewable primary energy resources; **NRPE:** Non-renewable primary energy resources used as energy carrier; **NRPM** Non-renewable primary energy resources used as materials; **TRPE:** Total use of non-renewable primary energy resources; **SM:** Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non-renewable secondary fuels; **W:** Use of net fresh water



#### End-of-life waste

| Parameter                                                                                                       | Unit | A1-A3    | A4       |  |
|-----------------------------------------------------------------------------------------------------------------|------|----------|----------|--|
| HW                                                                                                              | kg   | 1.84E+00 | 8.60E+00 |  |
| NHW                                                                                                             | kg   | 2.36E-01 | 3.95E+01 |  |
| RW                                                                                                              | kg   | 2.15E-03 | 7.94E-03 |  |
| UNATION AND A STREAM AND A REPORT |      |          |          |  |

HW Hazardous waste disposed; NHW Non-hazardous waste disposed; RW Radioactive waste disposed.

#### End-of-life outflows

| Parameter | Unit | A1-A3    | A4       |
|-----------|------|----------|----------|
| CR        | kg   | 0.00E+00 | 0.00E+00 |
| MR        | kg   | 6.21E-02 | 2.94E-01 |
| MER       | kg   | 2.11E-02 | 9.18E-02 |
| EEE       | MJ   | 0.00E+00 | 0.00E+00 |
| ETE       | MJ   | 0.00E+00 | 0.00E+00 |

**CR** Components for reuse; **MR** Materials for recycling; MER Materials for energy recovery; **EEE** Exported electric energy; **ETE** Exported thermal energy.

Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009

# Biogenic carbon content

| Indicator                            | Unit | At the factory gate |
|--------------------------------------|------|---------------------|
| Biogenic carbon content in product   | Kg C | 0.00E+00            |
| Biogenic carbon content in packaging | Kg C | 0.00E+00            |

Note – 1 kg of carbon is equivalent to 44/12 kg CO<sub>2</sub>.



# Additional Norwegian requirements

# Greenhous gas emission from the use of electricity in the manufacturing phase

The Norwegian national production mix from import, medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

| National electricity grid                             | Unit          | Value |
|-------------------------------------------------------|---------------|-------|
| Norwegian mix (market for electricity, ecoinvent 3.8) | g CO2 -eq/kWh | 28.53 |

#### Dangerous substances

The products contain no substances from the REACH list or the Norwegian priority list.

#### Hazardous substances

The declaration is based upon reference to threshold values and/or test results and/or material safety data sheets provided to EPD verifiers. Documentation available upon request to EPD owner.

- The product contains no substances given by the REACH Candidate list or the Norwegian priority list.
- □ The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
- □ The product contains dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- □ The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

#### Indoor environment

Not relevant

# Additional environmental information

| Indicator | Unit      | A1-A3    | A4                                    |
|-----------|-----------|----------|---------------------------------------|
| GWP-IOBC  | kg CO2 eq | 1.54E+01 | 2.61E+01                              |
|           |           |          | · · · · · · · · · · · · · · · · · · · |

*GWP-IOBC:* Global warming potential calculated according to the principle of instantaneous oxidation. To increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation



# Bibliography

| ISO 14025:2006        | Environmental labels and declarations - Type III environmental declarations - Principles and   |
|-----------------------|------------------------------------------------------------------------------------------------|
|                       | procedures                                                                                     |
| ISO 14044:2006        | Environmental management - Life cycle assessment - Requirements and guidelines                 |
| EN 15804:2012+A2:2019 | Sustainability of construction works - Environmental product declaration - Core rules for the  |
|                       | product category of construction products.                                                     |
| ISO 21930:2017        | Sustainability in buildings and civil engineering works - Core rules for environmental product |
|                       | declarations of construction products and services                                             |
| NPCR PART A           | Construction products and services                                                             |
| NPCR 018              | Part B for natural stone products, aggregates, and fillers                                     |
|                       |                                                                                                |

| C epd-norge             | Program Operator                                   | phone   | +47 23 08 80 00                |
|-------------------------|----------------------------------------------------|---------|--------------------------------|
|                         | The Norwegian EPD Foundation                       |         |                                |
|                         | Post Box 5250 Majorstuen, 0303 Oslo                | e-mail: | post@epd-norge.no              |
|                         | Norway                                             | Web     | www.epd-norge.no               |
| Clobal program operator | Publisher                                          | phone   | +47 23 08 80 00                |
|                         | The Norwegian EPD Foundation                       |         |                                |
|                         | Post Box 5250 Majorstuen, 0303 Oslo                | e-mail: | post@epd-norge.no              |
|                         | Norway                                             | web     | www.epd-norge.no               |
| STANGE INDUSTRI         | Owner of the decleration                           | phone   | +47 32 10 97 40                |
|                         | Stange Industri AS                                 |         |                                |
|                         | Administrative Office Bangsgate 7, 3019<br>Drammen | e-mail: | post@stangeindustri.no         |
|                         | Norway                                             | Web     | https://www.stangeindustri.no/ |
| energiråd               | Author of the life cycle assessment                | phone   | +47 98 25 90 10                |
|                         | Energiråd AS                                       |         |                                |
|                         | Trippevegen 1, 6009 Ålesund                        | e-mail: | harald@energirad.no            |
|                         | Norway                                             | web     | www.energirad.no               |
|                         | Eco Platform<br>Eco Portal                         | Web     | www.eco-platform.org           |



# EPD for the best environmental decision



The Norwegian EPD foundation www.epd-norge.no

